AUTOMOTIVE HEAT TREAT NEWS

Temperature Monitoring and Surveying Solutions for Carburizing Auto Components: Thermal Barrier Design

This is the third in a 4-part series by Dr. Steve Offley (“Dr. O”) on the technical challenges of monitoring low-pressure carburizing (LPC) furnaces. The previous articles explained the LPC process and explored general monitoring needs and challenges (part 1) and the use of data loggers in thru-process temperature monitoring (part 2). In this segment, Dr. O discusses the thermal barrier with a detailed overview of the thermal barrier design for both LPC with gas or oil quench. You can find Part 1 here and Part 2 here


Low-Pressure Carburizing (LPC) with High-Pressure Gas Quench – the Design Challenge

A range of thermal barriers is available to cover the different carburizing process specifications. As shown in Figure 1 the performance needs to be matched to temperature, pressure and obviously space limitations in the LPC chamber.

 

Fig 1: Thermal Barrier Designed Specifically for LPC with Gas Quench.

(i) TS02-130 low height barrier designed for space limiting LPC furnaces with low-performance gas quenches (<1 bar). Only 130 mm/5.1-inch high so ideal for small parts. Available with Quench Deflector kit. (0.9 hours at 1740°F/950°C).

(ii) Open barrier showing PTM1220 logger installed within phase change heatsink.

(iii) TS02-350 High-Performance LPC barrier fitted with quench deflector capable of withstanding 20 bar N2 quench. (350 mm/13.8-inch WOQD 4.5 hours at 1740°F /950°C).

(iv) Quench Deflect Kit showing that lid supported on its own support legs so pressure not applied to barrier lid.

The barrier design is made to allow robust operation run after run, where conditions are demanding in terms of material warpage.

Some of the key design features are listed below.

I. Barrier – Reinforced 310 SS strengthened and reinforced at critical points to minimize distortion (>1000°C / 1832°F HT or ultra HT microporous insulation to reduce shrinkage issues)

II. Close-pitched Cu-plated rivets (less carbon pick up) reducing barrier wall warpage

III. High-temperature heavy duty robust and distortion resistant catches. No thread seizure issue.

IV. Barrier lid expansion plate reduces distortion from rapid temperature changes.

V. Phase change heat sink providing additional thermal protection in barrier cavity.

VI.  Dual probe exits for 20 probes with replaceable wear strips. (low-cost maintenance)


LPC or Continuous Carburizing with Oil Quench – the Design Challenge

Although commonly used in carburizing, oil quenches have historically been impossible to monitor. In most situations, monitoring equipment has been necessarily removed from the process between carburizing and quenching steps to prevent equipment damage and potential process safety issues. As the quench is a critical part of the complete carburizing process, many companies have longed for a means by which they can monitor and control their quench hardening process. Such information is critical to avoid part distortion and allow full optimization of hardening operation.

When designing a quench system (thermal barrier) the following important considerations need to be taken into account.

  • Data logger must be safe working temperature and dry (oil-free) throughout the process.
  • The internal pressure of the sealed system needs to be minimized.
  • The complexity of the operation and any distortion needs to be minimized.
  • Cost per trial has to be realistic to make it a viable proposition.

To address the challenges of the oil quench, PhoenixTM developed a radical new barrier design concept summarized in Figure 2 below. This design has successfully been applied to many different oil quench processes providing protection through the complete carburizing furnace, oil quench and part wash cycles.

Fig 2: Oil Quench Barrier Design Concept Schematic

(i) Sacrificial replaceable insulation block replaced each run.

(ii) Robust outer structural frame keeping insulation and inner barrier secure.

(iii) Internal completely sealed thermal barrier.

(iv) Thermocouples exit through water/oil tight compression fittings.


In the next and final installment in this series, Dr. O will address AMS2750E and CQI-9 Temperature Uniformity Surveys, which often prove to be challenging for many heat treaters. "To achieve this accreditation, Furnace Temperature Uniformity Surveys (TUS) must be performed at regular intervals to prove that the furnace set-point temperatures are both accurate and stable over the working volume of the furnace. Historically the furnace survey has been performed with great difficulty trailing thermocouples into the heat zone. Although possible in a batch process when considering a semi-batch or continuous process this is a significant technical challenge with considerable compromises." Stay tuned for the next article in the series of Temperature Monitoring and Surveying Solutions for Carburizing Auto Components.

Temperature Monitoring and Surveying Solutions for Carburizing Auto Components: Thermal Barrier Design Read More »

Aluminum Alloys 101 for Automakers

 

Source: Aluminum Insider

 

The use of aluminum has rapidly increased in the manufacturing of automotive and commercial vehicles, thanks in part to the speed with which aluminum producers are developing stronger and more ductile metals from advanced alloys recently hitting the market.

Goran Djukanovic at Aluminum Insider has handily set up a guide to aluminum alloys applicable to use in the automotive industry.

We know aluminum is lighter (and therefore more energy efficient) and durable and offers superior corrosion resistance. But which alloys are best for the production of vehicle parts and components? Djukanovic wades past the marketing hype and assesses the metals on the market to provide this “Aluminum 101” basic overview of the products available to automakers, reviewing in particular:

  • Aluminum alloy series 6xxxx v 5xxxx;
  • Main alloys used in the industry, such as AA6016A, AA6111, AA6451, AA181A, AA6022, AA6061, AA5182, AA5754, RC5754; and
  • Alloys currently being developed or in the testing phase.

An excerpt:

New, superior and improved aluminum alloys have become – and are likely to stay – the main lightweighting materials in vehicles. The only obstacle remains their relatively high price compared to steel, but still affordable compared to carbon fiber reinforced plastics (CFRPs). What’s more, prices are expected to decrease in the future thanks to increased use, new recycling procedures, and techniques as well as lower input costs (Sc,Zr,Li etc). 

 

Read more: “Aluminium Alloys in the Automotive Industry: a Handy Guide”

Photo credit / caption: Novelis via Aluminum Insider / Aluminium alloy sample under a scanning electron microscope

Aluminum Alloys 101 for Automakers Read More »

Heavy-Duty Trucks Power Up with Heat Treating

 

Source: Car and Driver Magazine, PickupTrucks.com

 

In the heavy-duty truck sector, the components of a 400-hp, 1000-lb-ft engine have been boosted with additional heat treating as part of the overhaul to update the company’s 6-speed automatic line and appeal to modern truck customers.

The 2019 Ram 3500 houses the first engine in the heavy-duty pickup class to reach 1,000 lb-ft of peak torque, powered by an all-new optional high-output turbo-diesel 6.7-liter Cummins inline-six-cylinder workhorse.

The new transmission benefits from stronger planetary gears and a new heat treatment system designed to significantly widen the range of optimum operating temperatures. ~ PickupTrucks.com

 

Read more:

“The 2019 Ram 2500 and 3500 Deliver a 1000-LB-FT Warhead to the Front Lines of the Truck War” at CarandDriver.com

“2019 Ram 3500 Reaches New Torque Territory” at PickupTrucks.com

Heavy-Duty Trucks Power Up with Heat Treating Read More »

Arconic Splits Operations, Expands Hot Mill Capability

Arconic Inc., which specializes in lightweight metals engineering and manufacturing, recently announced plans to separate the company’s portfolio into Engineered Products & Forgings and Global Rolled Products, with a spin-off of one of the businesses. In addition, it will also explore the potential sale of businesses that do not best fit into engineered products & forgings or global rolled products.

The Global Rolled Products segment produces a range of aluminum sheet and plate products for the aerospace, automotive, commercial transportation, brazing, and industrial markets. The Engineered Products and Solutions (EP&S) represents Arconic’s downstream operations and produces products that are used mostly in the aerospace (commercial and defense), commercial transportation, and power generation end markets.

The New York City-based company’s decision to separate its portfolio comes after rejecting a $10 billion offer for the entire company and abruptly replacing its Chief Executive. John Plant, the newly appointed CEO, stated during the company’s 4Q18 conference call that he expects the spin-off would be completed within the next 9 to 15 months.

Arconic has also released investment plans to expand its hot mill capability and add downstream equipment capabilities to manufacture industrial and automotive aluminum products in its Tennessee Operations facility near Knoxville, Tennessee.

Tim Myers.

“This investment will add capacity to meet the growing demand for industrial products and automotive aluminum sheet,” said Tim Myers, President of Arconic’s Global Rolled Products business. “With this expansion, we are further diversifying the portfolio of one of our largest North American facilities.” The industrial market consists of products made with common alloy aluminum sheet, which is used in applications for commercial transportation, appliances, machinery, and construction.

 

 

Photo credit/caption: Bloomberg News / A worker controls a crane to move an aluminum coil at the Arconic Inc. manufacturing facility in Alcoa, Tennessee. 

Arconic Splits Operations, Expands Hot Mill Capability Read More »

U.S. Automaker Expands Capacity at Assembly Plants for Incoming SUVs

A major U.S. automaker recently announced plans to transform its Chicago manufacturing facility to expand capacity for the production of three new SUVs.

Ford Motor Company is investing $1 billion in Chicago Assembly and Stamping Plants, the company’s oldest continually-operated automobile manufacturing plant, to prepare for the Ford Explorer, Police Interceptor Utility and Lincoln Aviator.

Joe Hinrichs, president, Global Operations

With the Chicago investment, to begin in March and be completed later in the spring, Ford is building an all-new body shop and paint shop at Chicago Assembly and making major modifications to the final assembly area.  At Chicago Stamping, the company is adding all-new stamping lines. Advanced manufacturing technologies at the plants include a collaborative robot with a camera that inspects electrical connections during the manufacturing process. In addition, several 3D printed tools will be installed to help employees build these vehicles with even higher quality for customers.

“We are proud to be America’s top producer of automobiles. Today, we are furthering our commitment to America with this billion dollar manufacturing investment in Chicago and 500 more good-paying jobs,” said Joe Hinrichs, president, Global Operations. “We reinvented the Explorer from the ground up, and this investment will further strengthen Ford’s SUV market leadership.”

Chicago Assembly, located on the city’s south side, is Ford’s longest continually operating vehicle assembly plant. The factory started producing the Model T in 1924 and was converted to war production during World War II.

 

Photo credit/caption: Ford/Jason Hoskins, Ford employee, learns to build the all-new 2020 Ford Explorer.

U.S. Automaker Expands Capacity at Assembly Plants for Incoming SUVs Read More »

Temperature Monitoring and Surveying Solutions for Carburizing Auto Components: The Data Logger

This is the second in a 4-part series by Dr. Steve Offley (“Dr. O”), Product Marketing Manager at PhoenixTM, on the technical challenges of monitoring low-pressure carburizing (LPC) furnaces. The previous article explained the LPC process and explored general monitoring needs and challenges. In this segment, Dr. O talks about the data logger and its monitoring capabilities. 


The Range of the PhoenixTM Data Logger

Figure 1: PhoenixTM PTM1220 20-Channel IP67 Datalogger

A data logger, an electronic device that records data over time or in relation to locatio, can be useful in a variety of configurations and modified to suit the specific demands of the process being monitored. A range of models are on the market. At PhoenixTM they include 6 to 20 channels with a variety of thermocouple options (types K, N, R, S, B) to suit measurement temperature and accuracy demands (AMS2750 & CQI-9). Provided with Bluetooth wireless connection for short-range localized download and reset (direct from within the barrier) the logger memory of 3.8M allows even the longest processes to be measured with the highest resolution to deliver the detail you need. An optional unique 2-way telemetry package offers live real-time logger control and process monitoring with the benefits detailed in a later section.

 

Live Radio Communication

Figure 3: Schematic of RF telemetry real-time monitoring network

The logger is available with a unique 2-way RF system option allowing live monitoring of temperatures as the system travels through the carburizing processes. Furthermore, if necessary using the RF system it is possible to communicate with the logger, installed in the barrier, to reset/download at any point pre, during and post-run.

Provided with a high performance “Lwmesh” networking protocol the RF signal can be transmitted through a series of routers linked back to the main coordinator connected to the monitoring PC. The routers are located at convenient points in the process, positioned to maximize signal reception. Being wirelessly connected they eliminate the inconvenience of routing communication cables or providing external power as needed on other commercial RF systems.

In many processes, there will be locations where it is physically impossible to transmit a strong RF signal. In carburizing obviously within the oil quench, the RF signal is not capable of escaping when the system is submerged. With conventional systems, this results in process data gaps. For the PhoenixTM system, this is prevented using a unique fully automatic ‘catch up’ feature. Any data that is missed will be sent when the RF signal is re-established post-quench guaranteeing in most applications 100% thru-process data review.

Thru-Process Data Analysis and Temperature Uniformity Surveys (TUS)

Figure 3: Thermal view SW displaying the temperature profile from a carburizing with gas quench process

In thru-process temperature monitoring, the data logger collects raw process data directly from the product or furnace as it follows the standard production flow. To understand the data to allow process control and optimization, a Thermal View software analysis is used.

Using a range of analysis tools, the engineer can interpret the raw data. Key analysis calculations can be performed such as:

  • Max / Min — Check maximum and minimum product temperature over whole product or product basket through phases of process carburizing, diffusion and quench.
  • Time @Temp — Confirm that the soak time above required carburizing temperature is sufficient for correct carbon diffusion and surface properties.
  • Temperature Slopes —Measure the quench rate of the product to ensure that the hardening process is performed correctly.

 

Next up in the series: Designing an Innovative Thermal Barrier — The carburizing process by its nature is very demanding when considering protection of the datalogger from high temperatures and rapid temperature and pressure changes experienced in either the gas or oil quench.

 

Temperature Monitoring and Surveying Solutions for Carburizing Auto Components: The Data Logger Read More »

Carbon Science Center to Pioneer Research for Multiple Applications

A global leader in materials science recently celebrated the grand opening of its new multi-million dollar development center which will pioneer research into carbon materials and technologies.

Neil Sharkey, Vice President for Research at Penn State

Morgan Advanced Materials has opened the doors to its Carbon Science Center of Excellence (CoE) research and development facility at Penn State UniversityThe CoE, which is a collaboration between the manufacturer and the university, will focus on carbon-based materials used in a wide range of industries and engineering applications, including aerospace, healthcare, industrial, power generation and more.

Among many projects, the company is working on electrified rail products including carbon current collectors used at the top of train carriages to connect to overhead wires.

“The work undertaken at our facility with Morgan will be truly revolutionary,” said Neil Sharkey, Vice President for Research at Penn State. “The electrified rail carbon strips that Morgan is already working on, for example, will change how train transport works, making it both safer and more reliable, and decreasing downtime. Our partnership with Morgan places us at the forefront of developing new methodologies, in line with Morgan’s mission and values as well as our own. Their existing expertise and insights will help our researchers and students turn new ideas into commercially viable solutions. The Center itself is a huge attraction for other businesses to join the Innovation Park, furthering job creation and economic development in Pennsylvania.”

Located at the Penn State Innovation Park, Morgan’s CoE is close to the university staff, students and facilities. Penn State’s reputation as a world-renowned institution for carbon and materials science-focused research and its collaborative approach to working with business was key when choosing a partner for the project. The partnership brings together resources, experience, and knowledge from both sides, with researchers and scientists on site, many of whom have existing ties to Penn State.

Despite specializing in carbon science materials, the CoE will be utilized by Morgan’s wider businesses and, to date, has also become the home of research projects for the company’s Thermal Ceramics, Technical Ceramics, and Braze Alloys businesses.

“We’re incredibly proud to have launched this ground-breaking Center of Excellence with Penn State,” said Mike Murray, Chief Technology Officer at Morgan Advanced Materials. “It marks an important milestone in both organizations’ history, as we both strive for excellence and understanding of the properties and uses of carbon. With brilliant science minds on our doorstep, we hope the synergies created between us can accelerate our engineering and solutions for our customers, while benefitting more and more industries going forward.”

“Our Centers of Excellence ensure Morgan remains at the forefront of materials development on a global scale,” said Pete Raby, Chief Executive Officer at Morgan Advanced Materials. “In addition to helping us to create world-leading materials, our partnership with Penn State also allows us to recruit some of the best talent in carbon science and provide unrivaled training to our technologists and engineers.”

Photo credit and caption: INVENT PENN STATE / From left to right: Vern Squier, president and CEO of the Chamber of Business & Industry of Centre County; Andrew Goshe, global technical director at Morgan Advanced Materials; Neil Sharkey, Penn State vice president for research; Pete Raby, CEO at Morgan Advanced Materials; Phil Armstrong, CoE lead at Morgan Advanced Materials; and Nick Jones, Penn State executive vice president and provost, celebrate the opening of the Carbon Science Research Centre for Excellence with a ribbon-cutting ceremony. 

Carbon Science Center to Pioneer Research for Multiple Applications Read More »

Steel Producer Commissions Hot Dip Galvanizing Line

A major U.S. steel producer recently awarded a contract to a global industrial engineering group to add a continuous hot dip galvanizing line to the company’s existing plant in Columbus, Mississippi.

This was the second contract that Steel Dynamics, Inc, (SDI) awarded to Fives in a six-month period.

Madhu Ranade, vice president and general manager of SDI Columbus

The Columbus Flat Roll Division of SDI is investing $140 million to add the line (CGL № 3) and diversify its offerings to the automotive, agriculture, appliance, building and construction, energy, HVAC, lighting, and machinery industries. The advanced line, which will be capable of producing 400,000 tons per year, will be dedicated to producing unexposed automotive steel grades, as well as other commercial and specialized steel grades.

The scope of supply includes a complete design and supply of entry & exit coil handling sections, a degreasing section, a horizontal annealing furnace, hot dip galvanizing and cooling equipment, a skin-pass mill and strip leveler, inspection, metallurgical assistance for different steel grades and types of coating, as well as construction and commissioning assistance.

The new line is expected to be commissioned in the middle of 2020.

Guillaume Mehlman, president of the Fives’ Steel Division

“SDI’s target is to increase value-added product capacity, diversify product portfolio and increase profitability by investing in new projects and advanced technologies; and we look forward to again working with Fives. With the three lines in Columbus, Mississippi, and a fourth planned for the new mill in south western region, SDI will become the leading supplier and a one-stop shop of coated products for customers throughout southern region of United States and in Mexico,” said Madhu Ranade, vice president and general manager of SDI Columbus.

We are proud to work with SDI to contribute to the success of their entrepreneurial-oriented business. Fives has significant references worldwide designing and supplying advanced technologies, including complete annealing, galvanizing and coating lines in the USA, Europe and Asia,” said Guillaume Mehlman, president of the Fives’ Steel Division.

Steel Producer Commissions Hot Dip Galvanizing Line Read More »

Unhinging Lightweighting from Past Constraints of Design and Materials

 

Source: Industry Week

 

Open any garage today and the vehicle you’ll find inside is likely to contain components achieved by lightweighting methods. In fact, it’s a practice that goes back to the days of removing backseats from the cars we inherited from older siblings because the drive for speed and basic economics together has always propelled designers, engineers, and backyard gearheads to find a way to produce a lighter vehicle.

Industry Week recently took a look at the technology and materials that mark the road to development of today’s parts made from ultra-high-strength blends of steel, aluminum, magnesium, and carbon fiber, relying on next-gen design software and techniques such as additive manufacturing and resulting in lighter and stronger vehicles and vehicle components.

Gregory E. Peterson, principal materials engineer for the Michigan Manufacturing Technol­ogy Center, a consulting organization that helps manufactur­ers improve profits and performance, “points to the lightweighting rule that a 10% weight reduction leads to a 6% to 7% increase in fuel economy.”

The Michigan Manufacturing Technology Center helped develop an aftermarket Corvette (C2) frame that is lighter and stronger than the original.

Carmakers are responding with forwarding thinking business changes that include workforce, design, and footprint. For example, GM is focusing on electric or fuel-cell powered vehicles, which will require a paradigm shift in part production — in just about every aspect of its current manufacturing protocol. How does this look on the ground, in the lab, where the decisions are matter?

Why does a seat belt bracket look the way it does? Because of machining requirements. But what if machining was re­placed by additive manufacturing?

“You unhinge yourself from those constraints with gen­erative design. It opens up a whole new set of lightweighting opportunities that we have based on designs we can’t make any other way,” said Kevin Quinn, GM Director of Additive Design and Manufacturing.

 

Read more: “The Road to Lightweighting: The Tech & Materials Leading the Way”

 

 

Photo credit and caption: The Michigan Manufacturing Technology Center helped develop an aftermarket Corvette (C2) frame that is lighter and stronger than the original.

Unhinging Lightweighting from Past Constraints of Design and Materials Read More »

Temperature Monitoring and Surveying Solutions for Carburizing Auto Components: Introduction

This is the first in a 4-part series by Dr. Steve Offley (“Dr. O”), Product Marketing Manager at PhoenixTM, on the technical challenges of monitoring low-pressure carburizing (LPC) furnaces. This introductory article explains the LPC process and general monitoring needs and challenges. 


Carburizing Process

Dr. Steve Offley (“Dr. O”), Product Marketing Manager PhoenixTM

Carburizing has rapidly become one of the most critical heat treatment processes employed in the manufacture of automotive components. Also referred to as case hardening, it provides necessary surface resistance to wear while maintaining toughness and core strength essential for hardworking automotive parts.

The carburizing heat treatment process is commonly applied to low carbon steel parts after machining, as well as high alloy steel bearings, gears, and other components. Being critical to product performance, monitoring and controlling the product temperature in the heat treatment process is essential.

The carburizing process is achieved by heat treating the product in a carbon-rich environment, typically at a temperature of 900 – 1050 °C / 1652 – 1922 °F. The temperature and process time significantly influences the depth of carbon diffusion and associated surface characteristics. It is critical to the process that, following diffusion, a rapid quenching of the product is performed in which the temperature is rapidly decreased. This generates the microstructure giving the enhanced surface hardness while maintaining a soft and tough product core.

Increasing in popularity in the carburizing market is the use of batch or semi-continuous batch low-pressure carburizing furnaces. New furnace technology employs the dissociation of acetylene (or propane) to produce carbon in an oxygen-free low-pressure vacuum environment, which diffuses to a controlled depth in the steel surface. Following the diffusion, the product is transferred to a high-pressure gas quench chamber where it is rapidly gas cooled using typical N2 or Helium up to 20 bar.

An alternative to gas quenching is the use of an oil quench, used commonly in continuous carburizing furnaces where the products are plunged into an oil bath.

 

Fig 1: Schematics of the LPC Carburizing process showing the Temperature and Pressure steps

Temperature Monitoring Challenges in Low-Pressure Carburizing

As already stated, the success of the carburizing process is governed by careful control of both the process temperature and duration in the heating and quench stages. Obviously, when considering temperature, we are interested in the product temperature, not the furnace. Measuring product temperature through a carburizing process, although possible using trailing thermocouples, as performed historically, is neither easy nor safe, and it disrupts production for lengthy periods.

PhoenixTM provides a superior solution with the use of a “thru-process” temperature monitoring system. As the name suggests, the PhoenixTM temperature profiling system is designed to travel through the thermal process, measuring the product and or furnace environment from start to finish. The system can be incorporated into a standard production run so does not compromise productivity. A high accuracy, multi-channel data logger records temperature from thermocouple inputs, located at points of interest on, in, or around the product being thermally treated. To protect the data logger as it travels through the hostile furnace, a thermal barrier is employed to keep the logger at a safe working temperature to prevent damage and ensure accuracy of measurement. The barrier also obviously needs to protect during the quench, whether that be against high pressure or oil ingress if the quench can’t be avoided.

Employing the PhoenixTM system a complete thermal record of the product throughout the entire process can be collected. A popular enhancement to the system is the use of 2-way RF telemetry, providing real-time process monitoring directly from the furnace, useful for either profiling or performing a live Temperature Uniformity Survey (TUS). The product temperature can be viewed live and downloaded at any point in the furnace. Raw temperature data collected from the process can be converted into useful information using one of the custom-designed PhoenixTM Thermal View Software packages available. The thermal graph can be reviewed and analyzed to give a traceable, certified record of the process performance. Such information is critical to satisfying CQI-9, AMS2750, and other regulatory demands. Fully TUS-compliant reports can be produced in moments from the simple and intuitive software, making accurate TUS a simple and quick task. Information can be used to not only prove product quality but provide the means to confidently change process characteristics to improve productivity and process efficiency (Optimize Diffusion, Soak and Quench).

Temperature Monitoring and Surveying Solutions for Carburizing Auto Components: Introduction Read More »