TECHNOLOGY

IIoT Connectivity — The Future of Technology Is Here Today

Maintaining clear communication for high precision processing, critical with medical component heat treating, requires sophisticated operations. In today’s Technical Tuesday, Mike Grande, vice president of Sales at Wisconsin Oven Corporation, provides an overview of how the industrial internet of things (IIoT) advances heat treat performance capabilities and ensures accurate, repeatable results.

This informative piece was first released in Heat Treat Today’s December 2024 Medical & Energy Heat Treat print edition.


Today’s technology is evolving at an exponential rate. Over the last several years, digital technology has provided more and more connectivity between devices and processes. One of the most impactful is IoT technology. From smartphones to virtual assistants, touchscreen refrigerators to thermostats and interconnected home management systems, these products are quickly changing the way people interact and connect.

In addition to consumer products, the industrial world is also seeing increased reliance on this technology to improve throughput, decrease energy use, and increase equipment longevity by capturing and analyzing the data generated by their machines.

What Is IoT and IIoT Technology?

IoT (internet of things) refers to everyday items that have been equipped with sensors that transfer data over a network. Refrigerators, lights, thermostats, smart speakers, and entire homes are now available with IoT technology. Devices equipped with IoT options provide conveniences like remote monitoring, advanced programming, and smart learning, which make daily and household tasks easier. What seemed like science fiction just a few years ago has become reality.

This impressive technology does not only apply to the consumer world. The application of IoT to the manufacturing sector is even more impactful. Industrial internet of things (IIoT) is the term used to describe the application of connected IoT technology to industrial machinery. These systems collect and analyze data, learn from that data (“machine learning”), perform predictive maintenance, and then share that information with personnel, manufacturers, including manufacturers of the machines being monitored, and even other devices. This type of data collection and analysis gives valuable insight into the facilities, processes, and equipment to ensure that everything from energy usage in a facility to equipment performance for a process is optimized.

Figure 1. The IoT gateway collects the data from oven-mounted sensors and wirelessly transmits it to the cloud.
Source: Wisconsin Oven Corporation

How Is IIoT Used in Industrial Ovens and Furnaces?

IIoT technology tracks the performance and health of the most critical components and conditions in the ovens and furnaces they are monitoring. The system utilizes an IoT gateway (Figure 1), which collects information from predictive maintenance sensors that gathers performance data and stores it over time. The gateway also wirelessly transmits the data to a cloud platform where it can be displayed in dashboards, designed for easy viewing and monitoring. Thresholds are set at warning or alarm conditions. When exceeded, the system alerts the user or the oven manufacturer that there is a problem. This type of system predicts component failures before they occur, allowing time to schedule maintenance and minimize unplanned downtime.

Figure 2: An example of a dashboard used on an oven IIoT system
Source: Wisconsin Oven Corporation

The data is displayed in a dashboard format (Figure 2) which permits visual analysis of the information, and intuitive understanding of the process being performed in the oven. In the example of an oven used to process parts in an inert atmosphere, the x-axis represents the elapsed time, which can be expanded or collapsed by the user in order to provide a more (or less) detailed view of the process. The y-axis tracks variables such as temperature, pressure, oxygen level, nitrogen flow rate, and humidity level.

A few examples of the oven data gathered and analyzed by an IIoT system are as follows:

  • The output of the temperature controller is monitored. If, for example, the controller output is normally running at 30% for a specific oven (meaning the oven is using 30% of its full heat capacity), and for no apparent reason it increases to 60% output, this indicates either an exhaust damper is stuck open and causing the oven to exhaust too much of its heat, there is a heater failure, or a door is not closing fully, or something else.
  • Vibration sensors installed on recirculation blowers can monitor the health of the oven. Since blowers are rotating machines, they have a predictable vibration frequency and amplitude. As the blower bearings wear over time, these vibration parameters change. The IIoT system uses proprietary algorithms to determine acceptable vibration levels at different temperatures and RPMs. As the vibration values change over time, the system can predict when blower failure is likely, prior to it occurring. This allows replacement parts to be ordered before a “hair on fire” situation where the equipment suddenly stops working, interrupting production and workflow.
  • In order to monitor the burners on gas-fired ovens, the flame safety system is wired to the IIoT system. This allows remote evaluation of the flame sensor, purge timer, and other components that are critical to safe and proper burner operation. On older ovens, nuisance shutdowns can occur due to a dirty combustion blower, dirty flame rod, faulty airflow switch, or other reasons. An IIoT system allows the oven manufacturer to remotely diagnose this type of issue without ever sending a service technician to the job site, saving time and money.
  • An oven IIoT system is often used to measure the oven chamber pressure. Ovens can be intentionally operated at a neutral pressure, a slightly negative, or slightly positive pressure, for various process-related reasons. A pressure sensor measures this value and, via the IIoT gateway, delivers it to the dashboard in real time. If the chamber pressure strays outside of a predetermined range, this indicates a failure such as an improper damper setting or a malfunctioning exhaust blower.

The Benefits of IIoT Technology

Predictive maintenance is one of the most important benefits of IIoT. The ability to prevent potential equipment breakdowns and resulting process bottlenecks is invaluable. Not only does IIoT allow plant managers and operators to schedule maintenance ahead of time, it also reduces maintenance hours by knowing exactly what the issue is that needs to be serviced. This reduction in unplanned downtime increases productivity, which translates to higher profits.

The quantity of detailed, relevant data available (real time and retroactive) via the IIoT system exceeds the information a service technician can gather oven side, especially if the oven has stopped working. Using IIoT to remotely gain information to service the equipment, the problem can often be resolved the same day.

Perhaps the most impressive benefit of IIoT is remote diagnostics. Whether a furnace or oven is experiencing occasional unexplained shutdowns, or is completely out of commission, it typically takes days or weeks to schedule a service technician to inspect the equipment and diagnose the problem. However, if the oven is equipped with IIoT, a call can be made to the oven manufacturer who can remotely log into the system dashboard. They will be able to view and analyze the data gathered by all the sensors going back over time, without sending a service technician to the job site. Also, the quantity of detailed, relevant data available (real time and retroactive) via the IIoT system exceeds the information a service technician can gather oven-side, especially if the oven has stopped working. Using IIoT to remotely gain information to service the equipment, the problem can often be resolved the same day. Further, the IIoT system gathers and records the data going back in time for months, which is invaluable when trying to diagnose a chronic or intermittent failure.

Another use of IIoT technology is energy management. Through IIoT monitoring, facilities and equipment can be set to optimize energy efficiency. By ensuring the oven uses only the amount of heat energy necessary, and no more, its energy consumption is minimized. The system can reveal, for example, that a second shift oven operator opens the oven doors for five minutes to unload the parts and then load the next batch, while the first shift operator takes ten minutes to do the same process, wasting a great deal of energy as heated air spills out of the oven for an extra five minutes with every batch.

Data Security

IIoT devices use encryption to protect against unauthorized access to the oven operational data. Data transmitted between IIoT devices and the cloud is encrypted using protocols like Transport Layer Security (TLS). This provides confidence that only approved parties can access the information, safeguarding it from those with malicious intent. This ensures that even if data is intercepted, it will appear as jumbled information that cannot be read without the decryption key.

Because the data collected relates to the oven or furnace being monitored, and is not descriptive of the parts being processed, it would be of limited use to anyone who gained unauthorized access. If a malicious actor discovered, for example, the vibration levels, temperature controller output, or the status of the burner system while the oven is processing a load, it would be of limited proprietary value and would not directly reveal information about the parts being processed since no information about the load is included in the data.

In considering the security risk of an IIoT system collecting and transmitting data to the cloud, it must be compared to the alternative, which is bringing a service technician to the job site to perform the required maintenance or troubleshooting. When a service technician is invited on site, they have the opportunity to view the parts being processed, which temperature profiles apply to which parts, material handling methods, ancillary processes performed before or after heating, and even unrelated proprietary processes performed in the facility. This level of intrusion is much greater than simply sending the oven IIoT data to the cloud and avoiding the service technician entirely.

The Future of IIoT

Since the introduction of IIoT to the industrial oven market, it has gained acceptance by a wide range of manufacturers, and it is expected to continue to grow. Artificial intelligence (AI) is becoming a part of IIoT, as it can optimize the algorithms used in predictive maintenance. Also, IIoT can incorporate AI’s cognitive capabilities to better be able to learn at what thresholds of vibration, pressure, etc., to send alert notifications.

To Summarize

Consider purchasing an IIoT system with your next industrial oven. The successful implementation and use of IIoT provides a competitive advantage to the owner of the equipment. In today’s world of “doing more with less,” IIoT can increase productivity, reduce maintenance costs and unplanned downtime, and decrease energy use, all at minimal cost, and with no additional personnel required.

About the Author:

Micke Grande Head Shot
Mike Grande
Vice President of Sales
Wisconsin Oven Corporation

Mike Grande has a 30+ year background in the heat processing industry, including ovens, furnaces, and infrared equipment. He has a BS in Mechanical Engineering from University of Wisconsin-Milwaukee and received his certification as an Energy Manager (CEM) from the Association of Energy Engineers in 2009. Mike is the vice president of Sales at Wisconsin Oven Corporation.

For more information: Contact sales@wisoven.com. 



IIoT Connectivity — The Future of Technology Is Here Today Read More »

Fringe Friday: 5G Network Introduced for Metallurgical Industry

HTD Size-PR Logo

Sometimes our editors find items that are not exactly “heat treat” but do deal with interesting developments in one of our key markets: aerospace, automotive, medical, energy, or general manufacturing.

To celebrate getting to the “fringe” of the weekend, Heat Treat Today presents today’s Heat Treat Fringe Friday: an exciting development for 5G’s applications in the metallurgical industry, allowing for the development of new materials and the reduction of energy consumption and emissions.


Jens Petri
Head of Technologies and Partnerships
SMS digital
Source: LinkedIn

SMS Group, a metallurgical company with North American locations, is building its own “private 5G Campus network” for research and development at its Hilchenbach location in the Siegerland. Together with Mugler and Ericsson, a private 5G infrastructure was set up here that enables not only the testing of the highest mobile communications standard currently available, but also the advancement of new developments for the metallurgical industry.

The use of a private 5G network offers a whole array of approaches to solutions, which SMS is now testing for the first time on an industrial scale and developing for customers in the metallurgical industry around the world.

The private 5G standalone Campus network used at SMS provides the basis for an initial test environment for the implementation of various 5G use cases. The network based on Ericsson Private 5G Technology (EP5G) was implemented by Mugler. Thanks to the efficient collaboration of all project partners, the system went live just four weeks after the project was launched.

Tests are carried out on applications from the fields of mobility and automated guided vehicles (AGV), the Industrial Internet of Things (IIoT), and lone worker applications. These are integrated and comprehensively tested at SMS’s Hilchenbach site, with the aim of optimizing their practical implementation. Moreover, the new private 5G network location serves as a platform for putting into practice the findings gained within the framework of the 5G-Furios research projects being run and funded by the state of North Rhine-Westphalia, the European Union’s Horizon 2020 project Zero-SWARM, and the CLOUD56 research project of the Federal Ministry for Digital and Transport (BMDV).

The SMS test environment offers a unique opportunity to test use cases internally and to present them to potential customers in a clear and illustrative way. The 5G Campus network represents an important step in the evaluation of advanced digitalization technologies and their applications in the steel industry.

Says Jens Petri, head of Technologies and Partnerships at SMS digital, “We serve the market with a sensor solution for production companies that is scalable and easy to integrate. Thanks to the 5G connectivity, it enables the transmission and processing of data to gain insights into the process that were jointly developed and tested at SMS group in Hilchenbach. SMS group is closing the gap between physics, sensor technology, OT, and IT.”


Find heat treating products and services when you search on Heat Treat Buyers Guide.Com

Fringe Friday: 5G Network Introduced for Metallurgical Industry Read More »

Traveling through Heat Treat: Best Practices for Aero and Auto

Thinking about travel plans for the upcoming holiday season? You may know what means of transportation you will be using, but perhaps you haven't considered the heat treating processes which have gone into creating that transportation. 

Today’s Technical Tuesday original content round-up features several articles from Heat Treat Today on the processes, requirements, and tools to keep planes in the air and vehicles on the road, and to get you from one place to the next. 


Standards for Aerospace Heat Treating Furnaces 

Without standards for how furnaces should operate in the aerospace, there could be no guarantee for quality aerospace components. And without quality aerospace components, there is no guarantee that the plane you're in will be able to get you off the ground, stay in the air, and then land you safely at your destination.

In this article, written by Douglas Shuler, the owner and lead auditor at Pyro Consulting LLC, explore AMS2750, the specification that covers pyrometric requirements for equipment used for the thermal processing of metallic materials, and more specifically, AMEC (Aerospace Metals Engineering Committee).

This article reviews the furnace classes and instrument accuracy requirements behind the furnaces, as well as information necessary for the aerospace heat treater.

See the full article here: Furnace Classifications and How They Relate to AMS2750

Dissecting an Aircraft: Easy To Take Apart, Harder To Put Back Together 

Curious to know how the components of an aircraft are assessed and reproduced? Such knowledge will give you assurance that you can keep flying safely and know that you're in good hands. The process of dissecting an aircraft, known as reverse engineering, can provide insights into the reproduction of an aerospace component, as well as a detailed look into the just what goes into each specific aircraft part.

This article, written by Jonathan McKay, heat treat manager at Thomas Instrument, examines the process, essential steps, and considerations when conducting the reverse engineering process.

See the full article here: Reverse Engineering Aerospace Components: The Thought Process and Challenges

Laser Heat Treating: The Future for EVs?

If you are one of the growing group of North Americans driving an electric vehicle, you may be wondering how - and how well - the components of your vehicle are produced. Electric vehicles (EVs) are on the rise, and the automotive heat treating world is on the lookout for ways to meet the demand efficiently and cost effectively. One potential solution is laser heat treating.

Explore this innovative technology in this article composed by Aravind Jonnalagadda (AJ), CTO and co-founder of Synergy Additive Manufacturing LLC. This article offers helpful information on the acceleration of EV dies, possible heat treatable materials, and the process of laser heat treating itself. Read more to assess the current state of laser heat treating, as well as the future potential of this innovative technology.

See the full article here: Laser Heat Treating of Dies for Electric Vehicles

When the Rubber Meets the Road, How Confident Are You?

Reliable and repeatable heat treatment of automotive parts. Without these two principles, it’s hard to guarantee that a minivan’s heat treated engine components will carry the family to grandma’s house this Thanksgiving as usual. Steve Offley rightly asserts that regardless of heat treat method, "the product material [must achieve] the required temperature, time, and processing atmosphere to achieve the desired metallurgical transitions (internal microstructure) to give the product the material properties to perform it’s intended function."

TUS surveys and CQI-9 regulations guide this process, though this is particularly tricky in cases like continuous furnace operations or in carburizing operations. But perhaps, by leveraging automation and thru-process product temperature profiling, data collection and processing can become more seamless, allowing you better control of your auto parts. Explore case studies that apply these two new methods for heat treaters in this article.

See the full article here: Discover the DNA of Automotive Heat Treat: Thru-Process Temperature Monitoring


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


Traveling through Heat Treat: Best Practices for Aero and Auto Read More »

Dig into the Archives: 5 Technical Articles for Fresh Heat Treaters in Auto

OCAre you a relatively new reader in automotive heat treat? Welcome. Enjoy this archive of articles from the automotive industry, which provides years of technical knowledge to fill any information gaps. Even the "OG" readers with Heat Treat Today will want to investigate this Technical Tuesday original content compilation that plumbs the depths of the archives.


1. What Heat Treatment To Use for Truck Gear Boxes?

Fig. 2. Schematic depiction of pusher furnace (l.) and 3D batch of helical gears (r.)This paper reveals the investigation and conclusions of distortion potentials for case hardening processes. Mainly, the focus was on how the SyncroTherm® concept method compared to conventional case-hardening processes for gears and sliding sleeves.

Contact us with your Reader Feedback!

Read about how the results effected the bottom line: reduced costs, quicker processes, and less distortion. Also, be sure to examine each of the charts and figures for further understanding of each test.

This article entered the Automotive Heat Treat archive in 2016, and was written by Andreas Schüler, Dr.-Ing. Jörg Kleff, Dr. Volker Heuer, Gunther Schmitt, and Dr. Thorsten Leist.

Read about here: "Distortion of Gears and Sliding Sleeves for Truck Gear Boxes – a Systematical Analysis of Different Heat Treatment Concepts"

 

2. Cracking the Case

Problems in heat treating result in the loss of valuable time and money. Getting to the bottom of those problems also usually takes time and money to investigate what's happening and how to fix it. What is a heat treater to do?

In this article, we follow a case study from the automotive industry to understand how to pinpoint a heat treating problem. This article specifically looks at what was causing cracking in variable valve timing (VVT) plates.

Read the 2018 article, "Part Failure Investigation & Resolution — A Case Study," by Rob Simons.

 

3. Carburizing: The Importance of Temperature Monitoring and Surveying

Temperature Monitoring and Surveying Solutions for Carburizing Auto Components: IntroductionLow pressure carburizing (LPC) furnaces play an important role in the automotive heat treating industry. During LPC, it is essential that processing temperature stays consistent and critical that the processing time frame is monitored.

This article discusses the importance of collecting temperature data and what to do with the data when it's been collected.

Throughout 2019, Dr. Steve Offley wrote for this series, beginning with this part 1, "Temperature Monitoring and Surveying Solutions for Carburizing Auto Components: Introduction." When you're through, enjoy part 2, part 3, and part 4.

 

4. Vacuum Brazing --- Back to the (Automotive) Basics

Vacuum Brazing for Automotive ApplicationsTime to brush up on a vacuum brazing furnace, but automotive industry style. Review the terms, parts, function, and more that are involved in a successful vacuum braze for automotive parts.

This study covers a semi-automatic TAV vacuum brazing furnaces, details the makeup of the furnace, and gives an idea of what happens with a load from start to finish.

Read this 2019 article by Alessandro Fiorese here: "Vacuum Brazing for Automotive Applications."

 

5. Saving Time --- Automation Versus Manual Hardness Tests

If you've ever heat treated automotive crank pins, you're probably familiar with at least one type of hardness test that case hardened crank pins are tested against. The big question is, which hardness testing method is better: automated or manual? This article compares these two methods to make and measure Vickers indentations.

Evaluate for yourself the comparisons between an experienced operator manually entering data to Wilson VH3100 series Vickers Microhardness Tester and a DiaMet software entry. Some additional findings show that the crank pins could be examined by the Wilson tester with far less manipulation in the vice as well as reduction in data recording mistakes.

When you read this 2020 article by Buehler, "Manual Versus Automated Hardness Testing", learn exactly how much time, exactly, is saved with automation.


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


 

Dig into the Archives: 5 Technical Articles for Fresh Heat Treaters in Auto Read More »

The ‘Sounds’ of Space as NASA’s Cassini Dives by Saturn

Cursus iaculis etiam in

In nullam donec sem sed consequat scelerisque nibh amet, massa egestas risus, gravida vel amet, imperdiet volutpat rutrum sociis quis velit, commodo enim aliquet.

Nunc volutpat tortor libero at augue mattis neque, suspendisse aenean praesent sit habitant laoreet felis lorem nibh diam faucibus viverra penatibus donec etiam sem consectetur vestibulum purus non arcu suspendisse ac nibh tortor, eget elementum lacus, libero sem viverra elementum.

Nulla pharetra, massa feugiat nisi, tristique nisi, adipiscing dignissim sit magna nibh purus erat nulla enim id consequat faucibus luctus volutpat senectus montes.

Lorem Ipsum

Magna enim, convallis ornare

Sollicitudin bibendum nam turpis non cursus eget euismod egestas sem nunc amet, tellus at duis suspendisse commodo lectus accumsan id cursus facilisis nunc eget elementum non ut elementum et facilisi dui ac viverra sollicitudin lobortis luctus sociis sed massa accumsan amet sed massa lectus id dictum morbi ullamcorper.

Morbi ut viverra massa mattis vitae blandit ut integer non vestibulum eros, diam in in et hac mauris maecenas sed sapien fermentum et eu.

The ‘Sounds’ of Space as NASA’s Cassini Dives by Saturn Read More »

Why Netflix shares are down 10%

Cursus iaculis etiam in

In nullam donec sem sed consequat scelerisque nibh amet, massa egestas risus, gravida vel amet, imperdiet volutpat rutrum sociis quis velit, commodo enim aliquet.

Nunc volutpat tortor libero at augue mattis neque, suspendisse aenean praesent sit habitant laoreet felis lorem nibh diam faucibus viverra penatibus donec etiam sem consectetur vestibulum purus non arcu suspendisse ac nibh tortor, eget elementum lacus, libero sem viverra elementum.

Nulla pharetra, massa feugiat nisi, tristique nisi, adipiscing dignissim sit magna nibh purus erat nulla enim id consequat faucibus luctus volutpat senectus montes.

Lorem Ipsum

Magna enim, convallis ornare

Sollicitudin bibendum nam turpis non cursus eget euismod egestas sem nunc amet, tellus at duis suspendisse commodo lectus accumsan id cursus facilisis nunc eget elementum non ut elementum et facilisi dui ac viverra sollicitudin lobortis luctus sociis sed massa accumsan amet sed massa lectus id dictum morbi ullamcorper.

Morbi ut viverra massa mattis vitae blandit ut integer non vestibulum eros, diam in in et hac mauris maecenas sed sapien fermentum et eu.

Why Netflix shares are down 10% Read More »

Watching Their Dust: Photographing Players in Pollination

Cursus iaculis etiam in

In nullam donec sem sed consequat scelerisque nibh amet, massa egestas risus, gravida vel amet, imperdiet volutpat rutrum sociis quis velit, commodo enim aliquet.

Nunc volutpat tortor libero at augue mattis neque, suspendisse aenean praesent sit habitant laoreet felis lorem nibh diam faucibus viverra penatibus donec etiam sem consectetur vestibulum purus non arcu suspendisse ac nibh tortor, eget elementum lacus, libero sem viverra elementum.

Nulla pharetra, massa feugiat nisi, tristique nisi, adipiscing dignissim sit magna nibh purus erat nulla enim id consequat faucibus luctus volutpat senectus montes.

Lorem Ipsum

Magna enim, convallis ornare

Sollicitudin bibendum nam turpis non cursus eget euismod egestas sem nunc amet, tellus at duis suspendisse commodo lectus accumsan id cursus facilisis nunc eget elementum non ut elementum et facilisi dui ac viverra sollicitudin lobortis luctus sociis sed massa accumsan amet sed massa lectus id dictum morbi ullamcorper.

Morbi ut viverra massa mattis vitae blandit ut integer non vestibulum eros, diam in in et hac mauris maecenas sed sapien fermentum et eu.

Watching Their Dust: Photographing Players in Pollination Read More »

No Longer a Dream: Silicon Valley Takes On the Flying Car

Cursus iaculis etiam in

In nullam donec sem sed consequat scelerisque nibh amet, massa egestas risus, gravida vel amet, imperdiet volutpat rutrum sociis quis velit, commodo enim aliquet.

Nunc volutpat tortor libero at augue mattis neque, suspendisse aenean praesent sit habitant laoreet felis lorem nibh diam faucibus viverra penatibus donec etiam sem consectetur vestibulum purus non arcu suspendisse ac nibh tortor, eget elementum lacus, libero sem viverra elementum.

Nulla pharetra, massa feugiat nisi, tristique nisi, adipiscing dignissim sit magna nibh purus erat nulla enim id consequat faucibus luctus volutpat senectus montes.

Lorem Ipsum

Magna enim, convallis ornare

Sollicitudin bibendum nam turpis non cursus eget euismod egestas sem nunc amet, tellus at duis suspendisse commodo lectus accumsan id cursus facilisis nunc eget elementum non ut elementum et facilisi dui ac viverra sollicitudin lobortis luctus sociis sed massa accumsan amet sed massa lectus id dictum morbi ullamcorper.

Morbi ut viverra massa mattis vitae blandit ut integer non vestibulum eros, diam in in et hac mauris maecenas sed sapien fermentum et eu.

No Longer a Dream: Silicon Valley Takes On the Flying Car Read More »

A Lesson From the Henrietta Lacks Story: Science Needs Your Cells

Cursus iaculis etiam in

In nullam donec sem sed consequat scelerisque nibh amet, massa egestas risus, gravida vel amet, imperdiet volutpat rutrum sociis quis velit, commodo enim aliquet.

Nunc volutpat tortor libero at augue mattis neque, suspendisse aenean praesent sit habitant laoreet felis lorem nibh diam faucibus viverra penatibus donec etiam sem consectetur vestibulum purus non arcu suspendisse ac nibh tortor, eget elementum lacus, libero sem viverra elementum.

Nulla pharetra, massa feugiat nisi, tristique nisi, adipiscing dignissim sit magna nibh purus erat nulla enim id consequat faucibus luctus volutpat senectus montes.

Lorem Ipsum

Magna enim, convallis ornare

Sollicitudin bibendum nam turpis non cursus eget euismod egestas sem nunc amet, tellus at duis suspendisse commodo lectus accumsan id cursus facilisis nunc eget elementum non ut elementum et facilisi dui ac viverra sollicitudin lobortis luctus sociis sed massa accumsan amet sed massa lectus id dictum morbi ullamcorper.

Morbi ut viverra massa mattis vitae blandit ut integer non vestibulum eros, diam in in et hac mauris maecenas sed sapien fermentum et eu.

A Lesson From the Henrietta Lacks Story: Science Needs Your Cells Read More »

What Moves Gravel-Size Gypsum Crystals Around the Desert?

Cursus iaculis etiam in

In nullam donec sem sed consequat scelerisque nibh amet, massa egestas risus, gravida vel amet, imperdiet volutpat rutrum sociis quis velit, commodo enim aliquet.

Nunc volutpat tortor libero at augue mattis neque, suspendisse aenean praesent sit habitant laoreet felis lorem nibh diam faucibus viverra penatibus donec etiam sem consectetur vestibulum purus non arcu suspendisse ac nibh tortor, eget elementum lacus, libero sem viverra elementum.

Nulla pharetra, massa feugiat nisi, tristique nisi, adipiscing dignissim sit magna nibh purus erat nulla enim id consequat faucibus luctus volutpat senectus montes.

Lorem Ipsum

Magna enim, convallis ornare

Sollicitudin bibendum nam turpis non cursus eget euismod egestas sem nunc amet, tellus at duis suspendisse commodo lectus accumsan id cursus facilisis nunc eget elementum non ut elementum et facilisi dui ac viverra sollicitudin lobortis luctus sociis sed massa accumsan amet sed massa lectus id dictum morbi ullamcorper.

Morbi ut viverra massa mattis vitae blandit ut integer non vestibulum eros, diam in in et hac mauris maecenas sed sapien fermentum et eu.

What Moves Gravel-Size Gypsum Crystals Around the Desert? Read More »