Researchers Develop Bacteria-Unfriendly Stainless Steel for Medical Devices

 

Source: Phys.org

 

Antonio Nanci, study supervisor and anatomist in cell biology who runs the Laboratory for the Study of Calcified Tissues and Biomaterials

Surgical medicine has for years depended upon stainless steel for medical devices such coronary stents, hip-implant stems, and spinal-disc replacements, for a variety of surgical tools such as scalpels and forceps, and for operating tables. However, allergic and toxic reactions that trigger rejection by the body have driven researchers to develop a stainless steel component that will resist the buildup of harmful bacteria, among other flaws.

Scientists at Université de Montréal’s Faculty of Dental Medicine, along with a colleague from the Department of Chemistry, have discovered a way to improve the efficacy of stainless steel by changing its surface through the creation of a nanoscale network of pores — a process called nanocavitation.

“The beauty of it is its simplicity and capacity to simultaneously improve cellular response and limit bacterial expansion,” said the study’s supervisor, Antonio Nanci, an anatomist in cell biology who runs the Laboratory for the Study of Calcified Tissues and Biomaterials, adding, “Basically, we took the simple methods we developed for titanium in dental implants and adapted them to stainless steel, and it works very well. Stainless steel is very resistant to chemical treatment, and a lot of people have tried over the years to make the surface functional. It’s a tough material to deal with. But we’ve pierced the problem.”

Read more: “Solving the Problem of Surgical Stainless Steel”