Fusing the Heat Treat Practices with Human Creativity

OC Creation requires endurance and continued hard work. Find out what creative applications and research services your colleagues are committed to bringing from across the heat treat industry.

These innovations could bring the next level of innovation to your industrial plants. Enjoy!


Novel Mechanical Testing Systems Powered By Finite-Element Analysis, Optimization Algorithms, and Machine Learning

- An excerpt from a Heat Treat Radio episode with James Dean -

Doug Glenn:  You may have already stated this a little bit, but briefly: indentation plastometry is basically taking an indentation to be able to test, not just hardness or not even necessarily hardness, but the deformation or the strain of material.  Do you have to know the microstructure of the material when you’re doing these tests?

James Dean:  That’s a good question.  In principle, no.  If we were to dig deep into the mechanics of what’s going on within our system and our software package, you’d come to recognize that it’s, from a mathematical point of view at least, insensitive to microstructural features.  There is a numerical method underlying this – a finite-element analysis – therefore, treating this as a continuum system doesn’t take account explicitly of the microstructure.

When you’re doing the test, it’s actually helpful to know something about the microstructure simply because our technology is all about extracting bulk mechanical behavior engineering properties.  Therefore, when we do our indentation test, it is important that we are indenting a representative volume of the material.

It is important that we are capturing all of the microstructural features that give rise to the behavior you would measure in a microscopic stress strain test.  Otherwise, you can’t pull out those bulk, core engineering properties, and therefore, the scale on which you do the indent is important.  Your indenter has to be large relative to the scale of the microstructure.  So, it’s only at that level that you need to understand or know anything about the microstructure.

DG:  This test is a nondestructive test, right?  You said you can actually test live materials, correct?

JD:  Yes.

DG:  You don’t have to destroy them, you don’t have to machine them, you don’t have to make them into something you can rip apart, right?

JD:  Right.

Read/Listen to the full interview here.


Bert demonstrates the benefits of working with a collaborative robot to induction harden steel parts. The robot gives the operator the ability to work directly next to it, as opposed to conventional robot arms where fencing and distance is required.

Robotic Revolution

- An excerpt from Metal Treating Institute Member Profiles with Penna Flame Industries -

The computerized robotic surface hardening systems have revolutionized the surface hardening industry. These advanced robots, coupled with programmable index tables, provide an automation system that helps decrease production time while maintaining the highest quality in precision surface hardening.

A few benefits of this service are:

  • Increased wear resistance
  • Higher hardness and longer life
  • Less processing time
  • Higher efficiency and productivity
  • Maintain tensile strength
  • Quick turnaround of the project
  • Consistent, repeatable process
  • Less distortion when compared to furnace treatment

Read the full article here.


High Pressure Break Through For Additive Manufacturing

- An excerpt from a Heat Treat Radio episode with Johan Hjärne -

DG:  Doing it all- stress relief, HIP, age, or whatever. Just for clarity sake, you’ve got a typical HIP process, you’re going to heat it up, put it under very high pressure, then, normally, if you didn’t have the high pressure heat treatment capabilities, you would have to cool that part down which is typically cooled quite slowly in a conventional HIP unit, taking more time and whatnot.  It then comes down to ambient, or close to ambient, where it can be held, you take it out, you put it back in another furnace (a normal furnace, not a HIP furnace), take the temperature back up, get it to the point where you want it, quick cool it, quench it, to a certain extent, to get the characteristics that you’re looking for, and you’re done.  What we’re talking about here is the combination of those two processes plus potential other things like stress relief, and all that, in a single unit, correct?

JH:  Yes.  This has very beneficial effects on time.  Many of the HIP vendors do not have HIP and heat treatment in the same facility.  Now we have sold a couple of units to some new HIP vendors that have this capacity, but, historically, the HIP vendors didn’t have both HIP and heat treatment.  First, the customer had to send it to a service provider for HIPing, they got the part back, they had to send it to somebody that could do the heat treat step, and then got the part back, and so on.  The time, and specifically for additive manufacturing, is important.  Keep in mind they can do a part pretty fast, anywhere between a day to two days, worst case a week, but then having to wait week after week after week to get the part back for the HIPing or for the heat treating.

DG:  So there’s a substantial, potential time savings, for sure; not just process savings in between furnaces, but the fact that you can buy one furnace and do both of those things.

Let’s talk for just a second about what types of products are most effectively HIPed and/or, if we can, high pressure heat treated.

JH:  As I said before, we really started to realize the potential with this technology with the additive manufacturing world.  That is were we started to realized that we can actually make a difference here.  Not only does it have a beneficial effect for the total time, but having the components under elevated temperature for a shorter period of time is actually beneficial for the microstructure; the grain doesn’t grow as much.

Read/Listen to the full interview here.


Modernizing Tech

- An excerpt from Metal Treating Institute Member Profiles with Franklin Brazing and Metal Treating -

Recent improvements include a new cooling tower, chiller system, enhanced duct work, LED lighting in the plant, a renovated breakroom for the associates, a quality room for the engineering staff, a new HVAC system for the front offices, and upgrades in technology systems.

The updated technology is not only used for improving efficiency and data analysis, but also for communication. It has been key to improving operations and has had a significant impact on relationships with clients. Franklin’s ability to effectively communicate enhances collaboration, which allows FBMT’s clients to more efficiently manage their supply chains, reduce the cost of rework and scrap, and better serve their clients.

Read the full article here.