Two atmosphere controlled retort box furnaces will be used for de-bindering ceramic matrix composite parts (CMC) as well as powder metals processing (PM) and hot isostatic pressing (HIP).
The main function of this L&L Special Furnace Co., Inc. furnace is to remove all organics and other materials used in the product prior to placing in a high fire vacuum chamber in a process called de-bindering: Parts are heated to 1220°F in a retort chamber that is pressurized with nitrogen. The by-products of the outgassing part are directed by pressure and flow out the rear of the furnace. The parts are then heated in a vacuum furnace to temperatures in excess of 2300°F. The result is a component that is stronger and lighter than titanium.
Aerospace and military have always been the key areas that CMC and additive technologies are applied. The CMC development is a key part of the subsonic ordnance project along with multitudes of other military applications. This technology allows for lighter and more durable aircraft, munitions, and body armor versus using some alloy and ceramic substitutes. Automotive has also always had a strong presence in the additive manufacturing industry as well.
It is new application areas were CMC technology is starting to shine. CMC technology is beginning to establish a presence in agricultural applications such as water desalinization, power and battery technology in providing lighter fuel cells. This technology will be applied to battery operated transportation vehicles, not only improving transportation capabilities but also lowering greenhouse emissions.
.
Search for heat treat solution providers and suppliers on Heat Treat Buyers Guide.com