Understanding Inductance in a Furnace Heating System

In this installment of the Controls Corner, we are addressing inductance in a furnace heating system, and the critical role it plays in various industrial systems, including furnace load systems. Impedance acts as a measure of how much a circuit resists the flow of AC current. In this guest column, Brian Turner, sales applications engineer at RoMan Manufacturing, Inc., explains how impedance applies in electrical circuits.

This informative piece was first released in Heat Treat Today’s November 2024 Vacuum Heat Treat print edition.


Inductance is a fundamental concept in electrical engineering, and it plays a critical role in various industrial systems, including furnace load systems. In furnaces used for heating, inductance is a key factor influencing the system’s electrical performance, energy efficiency, and overall operational behavior.

To talk about inductance, let’s first address impedance and how it applies:

In electrical circuits, impedance refers to the total opposition to the flow of alternating current (AC), which is a combination of both resistance (from resistors) and reactance (from inductors), essentially acting as a measure of how much a circuit resists the flow of AC current, taking into account both the resistive component (like a resistor) and the reactive component (like an inductor at a specific frequency) within the circuit.

Load configuration, power source (IGBT, VRT, ERT) to the furnace feedthrough
Source: RoMan Manufacturing Inc.

Inductance

Inductance is the property of an electrical conductor that opposes a change in the current flowing through it. It arises from the magnetic field generated around the conductor when an electric current passes through it. The unit of inductance is the Henry (H).

In an AC circuit, inductance creates a phenomenon known as inductive reactance, which resists the flow of current. Inductive reactance (XL) is given by the formula:

XL = 2πƒL

Where:
XL is the inductive reactance (in ohms)
f is the frequency of the AC supply (in hertz)
L is the inductance (in Henrys)

This reactance influences how the current behaves in the system, which is particularly important in furnace load systems where high current flows are common.

Resistance

Electrical resistance is the opposition that a material offers to the flow of electric current. It is measured in ohms (Ω) and depends on factors such as the material’s properties, its temperature, and the geometry of the conductor (length, cross-sectional area). In heating systems like vacuum furnaces, resistance is harnessed to convert electrical energy into heat through Joule heating (also known as resistive heating).

The relationship between electrical power, voltage, current, and resistance is governed by Ohm’s law:

V = IR

Where:
V is the voltage across the heating element(in volts)
I is the current through the element (inamperes)
R is the electrical resistance of theelement (in ohms)

The heat generated by the furnace’s heating elements is a function of the power dissipated in the resistance, given by the equation:

P = I2 x R

This shows that the heat produced is directly proportional to the resistance and the square of the current flowing through the heating elements

Close Couple

  • Reducing the material in the secondary* reduces resistance (HEAT = I2 x R)
  • Reducing the area in the secondary reduces inductive reactance increasing power factor

To be most efficient, use the shortest amount of conductor material from the electrical system secondary to the furnace feedthrough. Additionally, keep the distance between those conductors as small as possible.

Power Factor and Efficiency

Inductance in a furnace load system causes the current and voltage to be out of phase. This phase difference results in a lower power factor, which is a measure of how effectively the system converts electrical power into useful work. A lower power factor means that more apparent power (the combination of real power and reactive power) is required to achieve the same level of heating.

In practical terms, a furnace with a high inductive load will draw more current from the power supply for a given amount of heating, leading to increased energy losses and inefficiency.

In practical terms, a furnace with a high inductive load will draw more current from the power supply for a given amount of heating, leading to increased energy losses and inefficiency. Power factor correction techniques, such as the use of capacitors, are often employed to counteract the effects of inductance and improve system efficiency.

Conclusion

Inductance is a fundamental factor in the operation of furnace load systems, influencing everything from heating performance to energy efficiency and power quality. By understanding and managing inductance, furnace operators can optimize their systems for maximum performance while minimizing energy losses and operational costs. Controlling inductance is essential for ensuring that furnace load systems operate reliably and efficiently in demanding industrial environments.

*The connection from a vacuum power source to the furnace’s feedthroughs, this connection can be made using air-cooled cables, water-cooled cables, or copper bus.

About the Author:

Brian Turner
Sales Applications Engineer
RoMan Manufacturing, Inc.

Brian K. Turner has been with RoMan Manufacturing, Inc., for more than 12 years. Most of that time has been spent managing the R&D Lab. In recent years, he has taken on the role as applications engineer, working with customers and their applications.

For more informationContact Brian at bturner@romanmfg.com.