MANUFACTURING HEAT TREAT TECH

The Canary in the Furnace: Ceramic Disks Give Early Alerts of Temperature Changes

The question in many heat treaters’ minds is, “Why would I want more documentation on my furnaces?” TempTABs can act as an early warning sign that further temperature monitoring is necessary.

This Technical Tuesday article was written by Thomas McInnerney and Garrick Ackart of The Edward Orton Jr. Ceramic Foundation, for Heat Treat Today's November 2023 Vacuum Heat Treating print edition.


The Need for User-Friendly Documentation

Thomas McInnerney
Engineering Manager of Pyrometric Products
Edward Orton Jr. Ceramic Foundation.
Source: Edward Orton Jr. Ceramic Foundation

Increased regulations called for in AMS2750G and CQI-9 were, for the most part, driven by the client purchasing the items. With a business climate that can generate a product-liability lawsuit quicker than a rapid quench, clients are trying to protect themselves.

Contact us with your Reader Feedback!

Consequently, most heat treating facilities will perform the necessary and required temperature uniformity surveys (TUSs) as well as thermocouple calibrations. Once the formal TUS is complete, other than the information generated from the control thermocouples, the challenge still exists for the furnace operators to ascertain what happens throughout the furnace between surveys. By passing the last survey but failing the next one, how do you detect that something changed two days after the good survey or two days before the failed survey?

It is true you can run a temperature data logger with an array of thermocouples attached through the furnace to get a complete picture of the furnace performance, but that process includes production interruption, an expenditure of precious manpower, and significant expense in maintaining the data logger. Essentially, we have just defined the need for a cost-effective, user-friendly device to monitor the day-to-day repeatability of the performance of the furnace.

Metals Industry Demands

Garrick Ackart
Marketing and Business Development Manager
Edward Orton Jr. Ceramic Foundation.
Source: Edward Orton Jr. Ceramic Foundation

Driven by the question raised above, The Edward Orton Jr. Ceramic Foundation initiated a development project to provide such a product for the metals industry.

Demands of the metals industry are quite different from those of the ceramic industry. The detection device would have to be able to withstand rapid heat-up schedules, rapid quench, a wide variety of furnace atmospheres (air, nitrogen, hydrogen), and no atmosphere (vacuum), and do all this without introducing contaminants to the products being heat treated — no small challenge for an engineered ceramic product. Following a great deal of consultation and experimentation, Orton developed a product, the TempTAB, that can be used to benchmark and monitor furnace performance in most heat treating applications.

Measuring Dimension: How a TempTAB Works

How does the device work, and how is it made and controlled? The device depends on a constant slope curve of shrinkage versus temperature. When the device is exposed to more temperature and for longer periods of time at peak temperature, the amount of shrinkage increases.

Figure 1. The temperature monitoring system consists of ceramic sensors, a
measuring gauge, and software to convert dimension to temperature.
Source: Edward Orton Jr. Ceramic Foundation

TempTABs are small disks made from exact blends of select ceramic materials prepared in an environment where the processing variables are tightly controlled. The ceramic material is selected based on its predictable shrinkage, which is affected more by temperature than time; even so, holding at or near the peak temperature will have an impact on the final dimension.

Once the TempTAB is out of the furnace, its diameter is measured with a micrometer. The dimension, in millimeters, is entered into an Excel workbook that automatically looks up the equivalent temperature inside the furnace based on the furnace cycle time.

Temperature conversion charts are available with each batch of TempTABs for converting the diameter measurement to temperature. The charts have several columns of data which allow the user to find the data that is best associated with their final furnace cycle hold times (temperatures available for 10-, 30-, 60-, 120-, and 240-minute hold times). The charts are built into the software to allow you to monitor up to nine different locations inside the furnace for up to 360 runs (Figure 2). The software is available free from Orton’s website.

The resulting temperature data generated by the software is graphically displayed in both table and numerical format for easy interpretation. The data can also be copied into other Excel spreadsheets and SPC (Statistical Process Control) programs to be incorporated into existing quality programs.

Figure 2. Orton TempTAB software allows process temperature tracking at a glance.
Source: Edward Orton Jr. Ceramic Foundation

Primary Uses: Early Warning Device & Quality Control

Heat treat companies use these disks as an early warning device and to document that their processes are under control. First, they benchmark their thermal process by running several TempTABs through the heat treat furnace.

After establishing a benchmark with upper and lower control limits, the company will run the disks on a regular schedule, placing them in the same location alongside the parts being treated in the furnace (see process temperatures graphed with TempTABs in Figure 3).

Figure 3. Temperature data is displayed by location and can be copied into existing SPC software.
Source: Edward Orton Jr. Ceramic Foundation

At a glance, the furnace operator, the quality manager, or the general manager can see if the process is under control. The size of each disk indicates if the thermal process is, or is not, within the established control limits.

The case studies that follow demonstrate these primary uses in real-world heat treat.

Case Study #1: Furnace Documentation When You Need It

A manufacturer with in-house heat treating ran TempTABs alongside the thermocouples in one of its required nine-point uniformity surveys with a data logger. After the formal survey, they continued to run disks in each load, monitoring shrinkage of the disks. The heat treating operations wanted to document the thermal treatment of the product in every load. If something did change inside their furnace before the next required survey, the TempTABs would act as an early warning system alerting them that a formal survey may be necessary.

Case Study #2: Developing Backup Facilities/Preparing for Increased Demand

A company specializing in powder metal sintering wanted to duplicate a sintering process of one of their products, currently only being done at a single manufacturing site, at a second location. Initially, they duplicated all the settings in the new location (temperature settings and belt speed) and found that the resultant parts differed from those of the original site.

The company began to consider TempTABs. They liked the idea of having a device that could provide them with furnace temperature readings since they knew that it was an important variable to the quality of their parts. For one year, TempTABs were used daily for process control of the furnace. This use proved that the furnace was consistent and stable.

Since they had developed a benchmark of the disk dimensions yielding good parts, they were able to adjust the new facility settings so their process could be duplicated in the second facility. Within weeks, the powder metal sintering experts could produce products in the new facility consistent with the original facility.

Case Study #3: High-Value Heat Treating

A heat treating facility serving the aerospace industry historically ran nine thermocouples in every load of their batch furnace for bright annealing stainless steels to document furnace performance. The method required using many type S thermocouples and a data collection unit. Labor costs included setting up the thermocouple array and replacing the certified thermocouples. It was expensive and disruptive; they wanted an alternative.

The time needed to replace the TempTABs was minutes and only required one person’s time to place and gather them. After doing a correlation study of at least five runs over a week, the heat treat facility replaced the thermocouples with TempTAB disks. Now, a single operator places TempTABs inside every load so they can gather information at a lower cost. If they see any change in the amount of TempTAB shrinkage, they will run the thermocouple array to see precisely how the temperature profile has changed.

Figure 4. TempTAB wired in place during daily monitoring.
Source: Edward Orton Jr. Ceramic Foundation

About the authors:

Thomas McInnerney is the engineering manager of Pyrometric Products at The Edward Orton Jr. Ceramic Foundation. He received his BS in Ceramic Engineering at The Ohio State University and has been a key leader in the development and application of TempTABs for 22 years.

Garrick Ackart is the Marketing and Business Development manager at The Edward Orton Jr. Ceramic Foundation. He received a Bachelor of Science degree from Alfred University in Ceramic Engineering, an MBA from The Ohio State University, and has more than 25 years of experience in the ceramic and glass industry.

For more information:

Contact Thomas McInnerney at mcinnerney@ortonceramic.com or Garrick Ackart at ackart@ortonceramic.com.


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


The Canary in the Furnace: Ceramic Disks Give Early Alerts of Temperature Changes Read More »

Sustainability Insights: Vacuum Heat Treating in a Carbon-Conscious Market

Reducing the industrial carbon footprint has been at the forefront of much discussion, heat treat industry-specific or otherwise. How can heat treaters dealing with vacuum operations consider sustainability in a carbon-conscious market? 

This Technical Tuesday Sustainability Insight article was written by Bryan Stern, the product development manager at Gasbarre Thermal Processing Systems, for Heat Treat Today's November 2023 Vacuum Heat Treating print edition.


Bryan Stern
Product development manager
Gasbarre Thermal Processing System
Source: Gasbarre

There is a growing understanding that changes in environmental policy and corporate initiatives will have an increasing impact on the landscape of domestic processing and manufacturing industries in the near future. This is of particular interest to the heat treating industry as thermal processing intrinsically consumes large amounts of energy.

Contact us with your Reader Feedback!

Energy has always been a financial reality for heat treaters, but the impact of transitioning environmental reform will reach beyond monthly utility bills. This is because large players in primary heat treat markets will seek to integrate low-carbon service and equipment suppliers into their direct and indirect supply chains to meet decarbonization objectives.

As a result of this impending trajectory, there has been more attention on furnace design and energy sources within the thermal processing industry. One topic that has received a great deal of focus is the potential benefit of vacuum furnaces as a less emissions-intensive approach to heat treating. Although fundamentally based on electrification, it would be difficult to argue that at least some of the interest in vacuum does not stem from a reactionary desire to distance thermal processing from the image of fire-breathing fossil fuel furnaces given the current political environment.

But beyond the undeniably more marketable aesthetic, the legitimate question remains: Does vacuum heat treating provide tangible environmental advantages over combustion-fired atmosphere alternatives?

Atmosphere integral quench furnace

The soundness of the argument for electrification and vacuum is not as obvious as it might first appear. To start, eliminating on-site combustion does not eliminate CO2 emissions. Electrical utilities still have emissions factors (reported in CO2 equivalent emissions per kWh) that must be accounted for as part of Scope 2 supply emissions. Counterintuitively, the national average emissions factor for electric power is 2.2 times that of natural gas to produce an equivalent amount of thermal energy.1,2 This is primarily due to the inefficiencies associated with generating and transporting electricity versus converting fossil fuels directly to thermal energy on site.

In addition to having higher emissions, electricity is 3.6 times the cost of natural gas for an equivalent amount of energy based on national averages for 2022.3,4

The cost effectiveness of gas fired atmosphere furnaces historically has been the motivator behind their use, unless the process benefitted in some other way from vacuum processing.

If electricity has a greater carbon footprint and is more expensive per unit of energy than fossil fuels, why is the industry transitioning to electrification and increasingly favoring vacuum processing? The answer lies with several factors both internal and external to the equipment itself.

Within the scope of the equipment, gas fired furnaces are intrinsically inefficient. Burners exhaust hot gas which continuously siphons energy away from the process. Although less significant for direct fired burners, this effect is amplified for indirect burners, which are commonly used. Recuperators and regenerators can dramatically improve efficiencies by recycling exhaust to pre-heat combustion air, but additional energy is always required for burner systems beyond what is needed to heat the work and overcome losses through insulation. Electric furnaces, on the other hand, have no such additional demand, and the energy they consume is more directly applied to the process. Although the type of energy used is more financially and environmentally costly per unit, electric vacuum equipment uses that energy more efficiently.

In addition to the demands from the burner exhaust, gas fired furnaces usually depend on a blanketing atmosphere to protect the work from oxidation. Endothermic gas is commonly used for this purpose, and in addition to the heat input required for endothermic gas generation, CO and CO2 are products of the reaction. Although it is an objective of endothermic gas generation to minimize the amount of CO2 present in the furnace, the CO exhausted to the atmosphere eventually reacts to form CO2, leading to a higher effective emissions rate. The use of a vacuum as a protective atmosphere is less carbon-intensive as it relies primarily on the power required to operate the vacuum pumps. This leads to much lower emissions to create the processing atmosphere.

Looking outside of the equipment at the overall manufacturing process, heat treating in vacuum can often eliminate post processing steps required when using other types of equipment. This may come in the form of less oxidation or scale, meaning less part cleanup, or low distortion gas quenching, allowing final machining to be moved forward in the manufacturing process or removed altogether. These potential production cost savings are not new, but the value of eliminating the emissions associated with additional manufacturing steps will only serve to further incentivize vacuum equipment moving forward.

There is one final dynamic outside the scope of the equipment that contributes to the explanation of the industry’s push toward vacuum. The emissions factors associated with electric power generation are decreasing, a trend which is expected to continue. The contribution of renewable energy to the domestic power grid is projected to more than double in the next seven years.5

Single chamber vacuum furnace

Although the contribution from renewable sources is still significantly less than fossil fuels, changes in generation are not the only factors at play. Significant efforts are being made to develop grid-scale energy storage solutions. Although most often associated as a prerequisite for intermittent production from renewables, these storage solutions serve an important function for the existing infrastructure. By storing excess power during low demand and releasing it during peak hours, grid scale energy storage would allow fossil fuel power plants to run at more optimized efficiencies without having to ramp up and down to match demand.

Beyond the process efficiencies of vacuum discussed above, investing in electric fired equipment is the only way to capture the benefits of ongoing improvements to electric supply and generation infrastructure. While the benefits of electrification may currently depend on contextual variables such as geographic location and equipment design, natural gas fired processing has a relatively fixed ceiling for future improvement. As an added advantage of electrification, the carbon accounting reductions from the improvement in emissions factors can be captured passively after the initial investment.

While the above advantages of electrification and vacuum do help explain the industry’s push in that direction, it is worth considering how vacuum equipment will continue to evolve to maximize energy efficiency and reduce emissions. Historically, the majority of vacuum furnaces have been single chamber batch style pieces of equipment. This configuration usually requires that loading and unloading occur at, or near, room temperature to avoid oxidation of sensitive materials. In addition to longer floor-to-floor times, this means that the energy required to heat the furnace is thrown away at the end of each cycle.

The competitive demand for low-carbon solutions will drive the use of multi-chamber batch and continuous style furnaces that allow stored energy to be conserved between cycles. This will be especially true as we see more high-volume manufacturing shift away from traditional continuous atmosphere heat treating. In the past, batch vacuum processing has been too restrictive to both part cost and throughput to be competitive. As emissions concerns gain prominence, vacuum furnace configurations that offer higher energy efficiencies and throughput will begin to close that gap.

The processing and energy advantages of electric vacuum furnaces have positioned them well to meet the low-carbon demands of an increasingly emissions-conscious market. It will be exciting to see how the equipment continues to develop to meet those needs in the future.

References
[1] “Data Explorer: CO₂ total output emission rate (lb/MWh),” United States Environmental Protection Agency, last modified September 26, 2023, https://www.epa.gov/egrid/data-explorer.
[2] “Carbon Dioxide Emissions Coefficients,” U.S. Energy Information Association, released September 7, 2023, https:// www.eia.gov/environment/emissions/co2_vol_mass.php.
[3] “Natural Gas Summary,” U.S. Energy Information Association, released September 29, 2023, https://www.eia.gov/ dnav/ng/ng_sum_lsum_a_EPG0_PCS_DMcf_a.htm.
[4] “Electricity Data Browser,” U.S. Energy Information Association, accessed October 3, 2023, https:// www.eia.gov/electricity/data/browser/#/topic/7?agg=0,1&- geo=g0fvvvvvvvvvo&endsec=6&freq=A&start=2001&end=2022&ctype=linechart&ltype=pin&rtype=s&pin=&rse=0&maptype=0.
[5] “Renewables,” International Energy Agency, last modified July 11, 2023, https://www.iea.org/energy-system/renewables.

About the author:

Bryan Stern is the product development manager at Gasbarre Thermal Processing Systems. He has been involved in the development of vacuum furnace systems for the past 7 years and is passionate about technical education and bringing value to the end-user. Bryan holds a B.S. in Mechanical Engineering from Georgia Institute of Technology and a B.A. in Natural Science from Covenant College. In addition to being a member of ASM, ASME, and a former committee member for NFPA, Bryan is a graduate of the MTI YES program and is proud to have been included in Heat Treat Today's 40 Under 40 Class of 2020.

For more information:
Contact Bryan at bstern@gasbarre.com or IHEA.org.


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


Sustainability Insights: Vacuum Heat Treating in a Carbon-Conscious Market Read More »

“Quench” Your Thirst: 3 Technical Articles To Satisfy Your Needs

Thirsting for knowledge about quenching, but not sure where to start? Heat Treat Today has coalesced technical information across articles and podcast episodes from key experts, including significant quenching methods, innovative developments with quenching, and how to control temperature during the process.

Discover more about these three topics in today’s Technical Tuesday original content feature.


Monitor Quench Temperatures with Unique Thermal Barrier Designs

Automotive heat treating operations require repeatable operations to ensure that the composite parts within an automobile perform reliably. Steve Offley, also known as “Dr. O," the product marketing manager at PhoenixTM, outlines case studies of several temperature-critical operations to demonstrate how unique thermal barrier design for thru-process monitoring systems can solve temperature measuring problems. These processes include sealed gas carburizing into an integrated oil quench as well as LPC followed by transfer to a sealed high-pressure gas quench chamber.

Offley comments on the quenching process following LPC, saying, "During the gas quench, the [thermal] barrier [for temperature monitoring] needs to be protected from Nitrogen N2(g) or Helium He(g) gas pressures up to 20 bar." If you are facing heat treat processing with integrated quench, learn more about this temperature monitoring solution.

Read the full article here: Discover the DNA of Automotive Heat Treat: Thru-Process Temperature Monitoring

Intensive Quenching: An Answer for a "Greener" Heat Treat? 

Gas furnaces have the potential to be a significant source of carbon emissions in many essential heat treat processes. However, an innovative approach combining induction through heating with intensive quenching could be one answer for greener heat treating, particularly for steel production.

In this article, Chris Pedder, Edward Rylicki, and Michael Aronov share that an “ITH + IQ” technique "eliminates, in many cases, the need for a gas-fired furnace when conducting through hardening and carburizing processes." A lot of this comes down to shortening the time it takes to perform this process, but there is so much more that the authors illuminate in their tests and graphs.

Read the full article here: Induction Through Heating + Intensive Quenching: A “Green Ticket” for Steel Parts

Drinking from a Firehose: Answering Your Quench Questions with a Thorough Radio Review 

Stay afloat in a sea of quenching tips with this Heat Treat Radio review, summarizing three recent podcast episodes centered around quenching tips, techniques, and training — especially applying to the auto industry.

Explore the "green" process of salt quenching with Bill Disler of AFC-Holcroft, the topic of water in your quench tank with Greg Steiger of Idemitsu Lubricants America, and a broad review of auto industry quenching with Scott MacKenzie of Quaker Houghton, Inc.

Read the full article here: Heat Treat Quench Questions Answered with Radio Review


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


“Quench” Your Thirst: 3 Technical Articles To Satisfy Your Needs Read More »

Sustainability Insights: Process Heating and the Energy-Carbon Connection

“Plan, do, check, act.” When it comes to caring about carbon footprint, a path forward to may seem too out-of-reach. But breaking down process heating and how to efficiently consider carbon use can be possible with industry resources.

This Sustainability Insight article was composed by Michael Stowe, PE, the senior Energy Engineer at Advanced Energy for Heat Treat Today's September 2023 People of Heat Treating print edition.


Michael Stowe, PE
Senior Energy Engineer
Advanced Energy
Source: IHEA

Over the past several years, process heating energy markets have shifted in response to significant global pressures. The need to understand the impact of greenhouse gases (GHGs), especially carbon based emissions, on climate change is gaining more interest from organizations that have industrial process heating. Organizations that manufacture or use process heating equipment need to understand the impact their equipment can have on carbon emissions. The terms “carbon emissions” or “carbon footprints” use the word “carbon,” but these terms can include other GHGs, and the carbon refers to carbon dioxide gas (CO2).

Process heating requires energy input. The energy sources for process heating most frequently include the combustion of carbon-based fossil fuels such as natural gas, propane, fuel oil, diesel, or coal. Also, most combustion processes have a component of electricity to operate combustion air supply blowers, exhaust blowers, circulation fans, conveyors, and other items. Figure 1 shows the chemical process for the combustion of methane (i.e., natural gas).

Figure 1 demonstrates that during combustion, methane (CH4) combines with oxygen (O2) to form carbon dioxide (CO2) and water (H2O). This same process is true for any carbon-based fuel. If you try to imagine all the combustion in progress across the globe at any given time, and knowing that all this combustion is releasing CO2, then it is easy to see the problem and the need for CO2 emission reduction.

Figure 1. Chemical process for methane combustion
(Source: Advanced Energy)

In basic terms, if you have a combustion process on your site, then you are emitting CO2. The electricity consumed to support the combustion processes also has a carbon component and the consumption of this electricity contributes to a site’s carbon footprint. Climate change impacts due to these carbon emissions have prompted government and corporate actions that are creating unique new opportunities for more sustainable and lower carbon process heating methods.

So, combustion and electricity consumption on your site contribute to your carbon footprint. Knowing this, organizations may now want to understand the actual level of their carbon footprint and ways to reduce it. There are many methods and resources available to help organizations understand and work to improve their carbon footprint.

The Industrial Heating Equipment Association (IHEA) has recognized this need to understand carbon footprints and is in the middle of a four-part webinar series on this topic. Session three (held on July 20, 2023) covered methods and resources to help organizations determine and improve their carbon footprint.

Session 3: DOE Tools and Programs for GHG Reduction

There are many options available to help determine carbon emissions for equipment, processes, sites, and organizations. This presentation will review some of these available tools and how to apply them to different situations. Carbon emissions are directly tied to energy consumption, so it is very important to understand how all your energy is consumed on site by energy type. This presentation will provide tools and programs to help you understand your energy consumption and thereby understand your carbon emissions. Additionally, energy improvement projects are also carbon emission reduction projects. This session will help you understand how to determine the impact of energy projects on your carbon footprint.

Session 4: Ongoing Sustainability — Industry Best Practices for Continual Improvement

Carbon reduction is not a project, it is a process, and must be ongoing. Earlier sessions will help you determine your carbon footprint and understand ways to track and improve your carbon footprint. In this presentation, we will review methods and programs to ensure the continual improvement of your carbon reduction efforts. Following the “plan, do, check, act” method used in many continual improvement programs, we will review steps to take for keeping your momentum moving in the right direction. We will also plan to have industry case studies for success in ongoing and improving carbon reduction programs.

Registration for these sessions can be found on the events page of www.ihea.org. If you or your organization want to learn more about your carbon footprint and how to measure and reduce it, you will not want to miss this opportunity.

In summary, heat treating, and other process heating methods, require significant energy, much of which is fueled with carbon-based fossil fuels, and associated with support electricity consumption. Both combustion and electricity consumption contribute to an organization’s carbon footprint. One of the best ways to help manage your carbon footprint is to understand and manage your energy consumption. For more information on this topic, please check out the IHEA Sustainability & Decarbonization Initiatives.

About the author:

Michael Stowe (PE) is the senior energy engineer at Advanced Energy. Michael focuses on process heating and energy efficiency in manufacturing plants. He has significant experience in the manufacturing industry serving in various roles as design engineer, production manager, plant engineer, and facilities engineer over the past 27 years.


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


Sustainability Insights: Process Heating and the Energy-Carbon Connection Read More »

Optimize Working Life and Performance of Heat Treatment Alloy Castings

When it comes to optimizing the working life and overall performance of heat treatment alloy castings, proper alloy selection and design based on the intended application is a critical starting point. Discover the variables behind alloy selection and design and the additional factors that contribute: furnace maintenance, casting inspection, and cost reduction strategies.

This Technical Tuesday article was composed by Matthew Fischer, manager of Technical Sales, Castalloy Group for Heat Treat Today's August 2023 Automotive Heat Treating print edition.


Alloy Selection and Design Criteria 

Matthew Fischer
Manager of Technical Sales for Heat Resistant Products
Castalloy Group NA
Source: Castalloy Group

Optimal design and alloy composition for any heat treatment casting always requires careful consideration of a number of key operating variables. This is the only way to guarantee the part will deliver maximum utilization and efficiency for the intended application.

These variables include:

  • Anticipated service and maximum operating temperature
  • Size, orientation, and weight of the load
  • Thermal cycling and/or quenching
  • Range of temperature cycling
  • Frequency of temperature cycling
  • Rate of change of temperature
  • Type of atmosphere or other corrosive conditions of the application
  • Type of quenching or cooling
  • Size, shape, and weight of part(s)
  • How are the parts loaded and oriented? (e.g., manually, robotically, individually, bulk)
  • How is the alloy supported in the equipment? (e.g., rails, hearth, rollers, piers)
  • Additional processing requirements (e.g., machining, welding)
  • Abrasive or wear conditions
  • Ease of use (ergonomics) and replacement
  • Cost — initial and total cost of ownership

Contact us with your Reader Feedback!

In addition, there are fundamental factors that heavily influence optimal component design and alloy composition. For instance, the type of furnace used (e.g., box, pit, integral quench, continuous), alloy handling mechanism (fixture and tray), and application process (e.g., carburizing, normalizing, annealing, austempering, vacuum heat treating) all have an important role to play. It is worth noting, however, that the decision-making process is a fine balancing act that isn’t necessarily evenly weighted. While a specific alloy composition may Fiaddress the majority of performance needs, it may hinder others. Prioritizing end-use performance traits is therefore essential.

Furnace and Process Environment Maintenance 

Figure 1. Cast tray and fixtures
Source: Castalloy Group

How furnaces and processes are performance monitored and maintained is also key when seeking to optimize the performance and lifespan of heat treatment alloy castings. The specific type of furnace will dictate exact equipment and process maintenance requirements, but there are several universal best practice procedures and guidance processes that should be followed.

For instance, the Automotive Industry Action Group (AIAG) has established CQI-9 (Continuous Quality Improvement) standards for heat treatment. These standards provide the guidelines for a continuous cycle of assessment, planning, and improvement with respect to heat treat processing and due care of handling customer parts. The CQI-9 standards direct the heat treater to have and maintain the necessary equipment and associated control instruments used to monitor and record the furnace process operating parameters. They also promote the proper furnace operating process environment. However, the standards do not comprehensively address the overall maintenance requirements of the furnace and process environment equipment. Generally, yearly scheduled maintenance is important to the long-term successful continuous operation of furnace equipment. Lack of or intermittent maintenance can lead to unplanned shutdowns. Here are some of the most common maintenance issues to monitor and remedy:

Example 1: Support Misalignment

If base tray support mechanisms are in alignment (in the direction of travel) and flat (level throughout) to provide proper support of the base tray and associated fixtures and parts, then the tray should move through the furnace equipment without issue, provided the tray is in good operating condition. However, if there are broken rails or piers — or broken/deformed roller rails or wheels — then over time the tray may exhibit wear, deformation, cracks, or breaks.

Example 2: Transfer Mechanism Misalignment

If the transfer mechanisms are square to the tray (in the direction of travel) and level throughout, providing proper contact with the base tray, then the tray should move through the furnace equipment without issues, provided the tray is in good operating condition. However, if there are misaligned transfer mechanisms (pusher rods, pusher head, handler head etc.), then over time the tray may exhibit associated wear, deformation, distortion, cracks, or breaks.

Figure 2. Flat level surface and tray/grid
Source: Castalloy Group

Example 3: Uneven Heating

Although the furnace may be able to maintain an average furnace temperature as measured by a single control thermocouple, there may be uneven heating conditions (side-to-side, top-to-bottom, front-to back) due to a variety of factors, which could result in uneven thermal cycling of the alloy castings. This potential non-uniform heating of the alloy could lead to deformation, cracks, or breaks of the alloy castings. The CQI-9 standards work to monitor and address non-uniform heating using a periodic temperature uniformity survey (TUS) of the furnace heating chamber.

Figure 3. Example of original supplied alloy casting for comparison.
Source: Castalloy Group

Example 4: Non-Uniform Cooling

Although the quench chamber may be able to maintain an average quench medium temperature as measured by a control thermocouple, there may be uneven cooling conditions within a load due to a variety of factors, which could result in uneven thermal cycling of the alloy castings. If left unchecked, any of these issues may result in unintended wear, deformation, distortion, cracks, or breaks of the alloy castings. Furnace material handling issues may also result in an unplanned equipment downtime and productivity loss.

Alloy Castings Inspection

Alloy castings (fixtures, trays, grids) should be inspected periodically to ensure they are in adequate working order. This inspection could be performed when the furnace equipment is taken out of operation for summer or winter maintenance inspections and shutdowns. The main areas to consider are flatness, squareness, and proper proportion.

Damaged component
Source: Castalloy Group

Flatness

Trays, grids, and fixtures should remain flat or level across the width and length. Sagging, bowing, warping, or twisting can cause material handling issues within furnaces and associated process equipment. A simple method to check the flatness is to have a table with a flat and level surface where the tray, grid, or fixture may be placed to check and observe the flatness of the alloy casting. An alternate method to check the alloy casting flatness would be to use a level across the casting to check flatness.

Squareness

Trays, grids, and fixtures should remain square across the width and length. Being out of square can cause material handling issues within furnaces and associated process equipment. A simple method to check the squareness is to have carpenter’s square tool where the tray, grid, or fixture may be examined to observe the squareness of the alloy casting.

If the tray used in the heat treatment equipment is an assembly of trays, then each tray should be examined for squareness in all four corners. Trays that are out of square may cause tracking problems in the material handling of the furnace, or associated equipment, and should be replaced.

Figure 4. Square tool and tray/grid
Source: Castalloy Group

Proper Proportion

Trays, grids, and fixtures should remain in proper proportion as originally designed. Having bulges or large breaks that are outside of the alloy dimensional alignment compared with the originally supplied alloy casting can cause material handling issues within furnaces and associated equipment. A simple method to check the dimensional proportion is to have a picture or drawing of the originally supplied alloy casting. The tray, grid, or fixture can be compared with this in order to observe the overall soundness of the alloy casting. Suspect castings should be removed from daily operation to prevent potential material handling and associated equipment maintenance issues. An alternative to visual inspection is to make a simple jig that can be used to confirm the dimensional integrity of the alloy casting. Observable patterns of proportional changes within a common area of the alloy castings may indicate a potential issue occurring within the heat treat equipment that should be monitored and investigated before it becomes a major equipment issue and causes an unplanned equipment shutdown.

Optimizing Alloy Castings Using Periodic Purchases

Figure 5. Jig tool to check proportion
Source: Castalloy Group

Periodic purchases of alloy castings should be planned and budgeted annually to maximize casting working life, to minimize process interruptions due to potentially expired useful life of alloy castings, and to manage future expenditures for replacement alloy casting purchases.

In general, budgeting for a percentage of alloy purchases over a two to three- year period, depending on current and planned future operations, would be supportive of continuous production operations. The periodic alloy purchase is then integrated into the existing production operations and suspect alloy castings, if any, can be removed from daily production operations.

There are multiple approaches that can be implemented and adjusted according to individual plant production needs:

One approach to consider is the purchase of one-third of the total alloy purchase per year over the following three years after an initial purchase. In a continuous daily production operation, the initial purchased quantity of alloy castings will have been replaced, if needed, over the elapsed time.

An alternate approach to consider is a staggered percentage over three years. For example, 20–25% replacement the first year; 30–35% replacement the second year; 35–40% replacement the third year, adjusted as necessary based on current operating and business conditions.

This approach would also be useful for ramping up alloy quantity needs to meet increasing demand over time and could be an opportunity to address potential delivery time requirements with coordinated planned periodic purchases.

Additionally, intermixing newly purchased alloy castings along with production alloy castings, may provide for extended life for the latter.

Scrap Alloy Recycling: New Alloy Purchase Credit for Returning Your Scrap Alloy Material

When alloy castings are no longer usable in daily heat treatment operations, it can be advantageous to sell them back as scrap to the alloy supplier. The supplier should be able to provide a scrap repurchase credit that can be used for future purchases of new alloy castings.

Figure 6. Visual demonstration of capital flow for initial and subsequent alloy purchases
Source: Castalloy Group

Generally, this scrap alloy repurchase credit may be used in whole or in part as directed by the customer for new replacement alloy casting purchases.

As well as being cost-efficient, scrap alloy castings recycling supports the long-term sustainable use of metals, minimizes the potential negative impact on the earth’s environment, and reduces the overall carbon footprint of both alloy user and supplier.

Summary

Figure 7. Typical scrap alloy trays and grids
Source: Castalloy Group

To review, improving the working life of heat treating cast alloys starts with design and is maintained with factors that account for the full alloy casting life:

  • Choosing the right design and alloy composition for heat treatment castings is fundamental to optimizing their working longevity and performance. This decision can only be made by carefully considering key aspects of the intended casting
  • Maintaining furnace equipment and process environment operating conditions will also assist in maximizing the working life and overall performance of the alloy castings.
  • Alloy casting inspection will support heat treat operations and minimize potential equipment downtime by providing evidence of furnace equipment issues or malfunction.
  • Periodic budgeted alloy casting purchases support heat treat operations, will help maximize uptime, and minimize potential downtime associated with suspect or failing alloy castings.
  • Scrap (expired useful life) alloy repurchases can be used to off set the costs associated with new alloy casting purchases. Scrap alloy recycling also minimizes negative impact on the environment.

About the Author:

Matthew Fischer is the manager of Technical Sales for Heat Resistant Products at Castalloy Group NA. He has thirty years of experience in furnace design and applications working for a leading heat treat furnace equipment supplier. Additionally, he has worked for several years as a senior heat treat manufacturing engineer for a global tier-1 automotive company as well as in the controls and instrumentation fields across multiple industries, including thermal processing and heat treating.

For more information:
Contact Matthew Fischer at Matthew.Fischer@castalloygroup.com


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


Optimize Working Life and Performance of Heat Treatment Alloy Castings Read More »

Vacuum Furnaces: Origin, Theory, and Parts

OC

Vacuum furnaces are widely used in the aerospace and automotive industries. These furnaces are used for multiple processes including brazing, aging, and solution heat treating for countless materials. Typically, vacuum furnaces are utilized to ensure a lack of oxidation/contamination during heat treatment. This article will talk about the origins, theory, and main parts of vacuum technology and how it is used in both aerospace and automotive industries.

This Technical Tuesday feature was written by Jason Schulze, director of technical services at Conrad Kacsik Instrument Systems, Inc., and was first published in Heat Treat Today's December 2022 print edition.


A Brief History

Vacuum furnaces began to be used in the 1930s for annealing and melting titanium sponge materials. Early vacuum furnaces were hot wall vacuum furnaces, not cold wall vacuum furnaces like we use today. Additionally, most early vacuum furnaces did not utilize diffusion pumps.

Vacuum Heat Treat Theory

Jason Schulze Director of Technical Services Conrad Kacsik Instrument Systems, Inc.

Vacuum technology includes vacuum pumping systems which enable the vessel to be pulled down to different stages through the process. Degrees of vacuum level are expressed opposite of pressure levels: high vacuum means low pressure. In common usage, the levels shown below in Figure 1 correspond to the recommendations of the American Vacuum Society Standards Committee.

Vacuum level will modify vapor pressure in a given material. The vapor pressure of a material is that pressure exerted at a given temperature when a material is in equilibrium with its own vapor. Vapor pressure is a function of both the material and the temperature. Chromium, at 760 torr, has a vapor pressure of ~4,031°F. At 10¯5, the vapor pressure is ~2,201°F. This may cause potential process challenges when processing certain materials in the furnace. As an example, consider a 4-point temperature uniformity survey processed at 1000°F, 1500°F, 1800°F, and 2250°F. This type of TUS will typically take 6-8 hours and, as the furnace heats up through the test temperatures, vacuum readings will most likely increase to a greater vacuum level. If expendable Type K thermocouples are used, there is a fair chance that, at high readings, you may begin to have test thermocouple failure due to vapor pressure.

Figure 1. Vacuum levels corresponding to the recommendations of the American Vacuum Society Standards Committee
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.

Vacuum Furnace Pumping System

Vacuum heat treating is designed to eliminate contact between the product being heat treated and oxidizing elements. This is achieved through the elimination of an atmosphere as the vacuum pumps engage and pulls a vacuum on the vessel. Vacuum furnaces have several stages to the pumping system that must work in sequence to achieve the desired vacuum level. In this section we will examine those states as well as potential troubleshooting methods to identify when one or more of those stages contributes to failure in the system.

Vacuum furnaces have several stages to the pumping system that must work in sequence to achieve the desired vacuum level. Each pump within the system has the capability to pull different vacuum levels. These pumps work in conjunction with each other (see Figure 2).

Figure 2. Vacuum pumps work in conjunction with one another
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.

The mechanical pump is the initial stage of vacuum. This pump may pull from 105 to 10. At pressures below 20 torr the efficiency of a mechanical pump begins to decline. This is when the booster pump is initiated.

The booster pump has two double-lobe impellers mounted on parallel shafts which rotate in opposite directions (see Figure 3).

Figure 3. Booster pump positions
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.

The diffusion pump (Figure 4) is activated into the pumping system between 10 and 1 microns. The diffusion pump allows the system to pump down to high vacuum and lower. The diffusion pump has no moving parts.

Figure 4. Diffusion Pump
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.

The pump works based on the vaporization of the oil, condensation as it falls, and the trapping and extraction of gas molecules through the pumping system.

Image 1. Holding Pump
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.

The holding pump (Image 1) creates greater pressure within the fore-line to ensure that, when the crossover valve between the mechanical and diffusion pump is activated, the oil within the diffusion pump will not escape into the vessel.

Vacuum Furnace Hot Zone Design

The hot zone within a vacuum furnace is where the heating takes place. The hot zone is simply an insulated chamber that is suspended away from the inner cold wall. Vacuum itself is a good insulator so the space between the cold wall and hot zone ensures the flow of heat from the inside to the outside of the furnace can be reduced. There are two types of vacuum furnace hot zones used: insulated (Image 2) and radiation style (Image 3).

The two most common heat shielding materials are molybdenum and graphite. Both have advantages and disadvantages. Below is a comparison (Tables 1 and 2).

Table 1
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.
Table 2
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.

Vacuum Furnace Quenching System

Quenching is defined as the rapid cooling of a metal to obtain desired properties. Different alloys may require different quenching rates to achieve the properties required. Vacuum furnaces use inert gas to quench when quenching is required. As the gas passes over the load, it absorbs the heat which then exits the chamber and travels through quenching piping which cools the gas. The cooled gas is then drawn back into the chamber to repeat the process (see Figure 5).

Figure 5.Diagram of gas quenching
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.

Vacuum Furnace Trouble Shooting

In Table 3 are some helpful suggestions with regard to problems processors may have.

Table 3
Source: Jason Schulze, Conrad Kacsik Instrument Systems, Inc.

Summary

Vacuum furnaces are an essential piece of equipment when materials need to be kept free of contamination. However, there are times when this equipment may not be necessary, and is therefore considered cost prohibitive, although this is something each processor must research. This article is meant to merely touch on vacuum technology and its uses. For additional and more in-depth information regarding vacuum furnaces, I recommend a technical book called Steel Heat Treatment, edited by George E. Totten.

About the Author: Jason Schulze is the director of technical services at Conrad Kacsik Instrument Systems, Inc. As a metallurgical engineer with over 20 years in aerospace, he assists potential and existing Nadcap suppliers in conformance as well as metallurgical consulting. He is contracted by eQuaLearn to teach multiple PRI courses, including pyrometry, RCCA, and Checklists Review for heat treat.

Contact Jason at jschulze@kacsik.com
website: www.kacsik.com


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


Vacuum Furnaces: Origin, Theory, and Parts Read More »

Top 3 Heat Treat Grab and Go Visuals

OCWe get it. You read all day: emails, memos, furnace monitoring screens. To give your eyes a break, Heat Treat Today wanted to provide some grab and go visual resources. In this original content piece, check out some visuals to help you learn about the difference between Nitriding and FNC; discover how the U.S. is doing in the race to green steel production; and get an example of the type of numbers that are normal for a CQI-9 probe method A test.


The Numbers Don't Lie: Green American Steel Is Better than You Think

Contact us with your Reader Feedback!

In Heat Treat Today's August 2021 Automotive print edition, Lourenco Goncalves, chairman, president, and CEO of Cleveland-Cliffs, Inc. made a big statement: "The United States is the benchmark of the world in all things steel. Amongst all major steelmaking nations, we have by far the greenest emissions profile."

In a climate where the United States often gets a bad rap when it comes to environmental concerns, Lourenco's statement is hard to believe. But, the data below contradicts this bad reputation. Check out the graphic below to learn how the United States stacks up to other countries in steel production.

CQI-9: Understanding Probe Method A

Ensuring heat treating equipment falls within CQI-9 standards can be tricky. According to Erika Zarazúa, regional purchasing manager at Global Thermal Solutions, probe method A may be the best way to identify variations in control systems.

 

If you're curious about how probe method A works, view the chart below (in both English and Spanish) for an example of the kind of numbers that are typical for this test method.

Table 1. Probe method A
Tabla 1. Método de sonda A

 

Nitriding vs. FNC . . . What's the Difference?

These days, it seems like most heat treat shops are updating equipment or changing procedures to accommodate demands for ferritic nitrocarburizing. But how different are the two processes, really? When it comes to materials commonly processed, time cycles involved, and atmospheres required, where does the difference between nitriding and FNC begin? The chart below is a quick and easy guide to distinguishing the difference between these two hardening processes. Skim away or take a deep dive into the technicalities!

About the Authors:

Lourenco Goncalves is chairman, president, and CEO of Cleveland-Cliffs, Inc

Erika Zarazúa, a 40 Under 40 Class of 2021 member, is a metallurgical engineer with over 18 years of experience in heat treatment operations and temperature measurement and has worked in multiple engineering, quality, and project roles in the automotive and aerospace industries. Erika currently holds the position of regional purchasing manager at Global Thermal Solutions.

 Jason Orosz and Mark Hemsath at Nitrex, Thomas Wingens at WINGENS LLC – International Industry Consultancy, and Dan Herring, The Heat Treat Doctor at The HERRING GROUP, Inc., provided expert input for the Nitriding vs. FNC table.

 


Find heat treating products and services when you search on Heat Treat Buyers Guide.com


 

Top 3 Heat Treat Grab and Go Visuals Read More »

Heat Treat Radio #64: Thermocouple 101 with John Niggle, Pelican Wire (Part 3 of 3)

Heat Treat Today publisher Doug Glenn wraps up this three-part series with Pelican Wire experts by talking with John Niggle from Pelican Wire about thermocouple insulation types and considerations.

The first two episodes cover the history, types, vocabulary, standards, and other basics of understanding how thermocouples work. Listen to the previous episodes of the series here.

Below, you can either listen to the podcast by clicking on the audio play button, or you can read an edited transcript.



The following transcript has been edited for your reading enjoyment.

Doug Glenn (DG):  Welcome to Heat Treat Radio!

John Niggle (JN):  Yes, it's good to see you again, Doug.  I know we've run into each other a couple of times out there in the field.  I'm looking forward to having the opportunity to do all of this stuff in person again.

DG:  It will be nice.  Before we hit the record button, we were talking about shows this fall and hoping that they happen because you, like I, are ready to get out and go.

You are the business development manager for Pelican Wire.  If you don't mind, give us just a little bit of background about you and about your experience in the whole thermocouple world.

Pelican Wire headquarters

JN:  Sure, absolutely.  As you said, I am the business development manager at Pelican Wire.  I've been at Pelican since 2013 so we're working out my eighth year here.  I'm a career industrial sales representative.  I do have previous experience also, actually, in the process instrumentation industry.  Way back when, before I even knew how to spell thermocouples, I was selling that stuff when I first got out of college.  My career has, sort of, gone full circle, let's say.

DG:  Very nice.  Well, you've got plenty of years of experience, which is great.  We've had two previous episodes with your colleague, Ed Valykeo, and we covered a good bit of stuff.  We covered a lot of basics in the first episode.  We covered standardization, and things of that sort, in the second episode.  I want to encourage any listeners who haven't listened to those episodes, feel free to go back, Google “Heat Treat Radio and search for “Pelican Wire” and listen to episodes 1 and 2.

John, you and I want to move forward.  I'm always kind of curious about this question:  From your perspective, with your experience, why do we use thermocouples?  Let's talk about what they are and why we use them.

JN:  First of all, we have to assume that somebody is trying to measure the temperature of some sort of a process- a process or an event of some kind.  That's basically what they're trying to do.  Compared to other devices like RTDs, bimetal thermometers, liquid expansion state change devices and so forth, thermocouples are robust, they're inexpensive; they're repeatability, they're ease of use and size  -- all of those factors lead them to be more widely used than another sort of thermal measurement device of any kind.  It is the preferred method.

On top of that, I mentioned the expense part.  Because they're relatively inexpensive, there are certain industries, the heat treat industry and smelting industry, for example, consider these as, actually, consumable or disposable.  So, the cost factors in significantly in the industry that we're talking about here.

DG:  I live in western Pennsylvania and the town where my wife grew up, there was an old Leeds and Northrup manufacturing plant.  I believe they made the consumable thermocouples for melt shops.  You would, basically, throw the thermocouple in and it would melt quickly but it would give you a response during that time.

CLICK to Listen!

JN:  Right.  And, as I mentioned earlier, the response factor is important, or that's one of the factors considered, when people are looking at thermocouple wire.  And, you're correct, Ed Valykeo, as you mentioned, has 40 years of experience in the industry and has seen exactly the same sort of thing that you're talking about where people will just tack weld it onto something that gets thrown into a furnace or it gets thrown into a melting pot or something like that, and they're looking for that instantaneous temperature.

If you don't mind, I'll tell you that we've done some work, actually, in the aerospace industry and we had a customer that we sold significant, literally miles, of thermocouple wire to (when I say aerospace, it was specifically for space exploration) and this was because of whatever we had done with the insulation.  I can't tell you, because it was before my time, but this is what was relayed to me- they were able to get another 3 - 4 seconds of temperature measurement out of that wire.  That critical, extra data for them made all the difference in the world.

DG:  We're going to get to the insulation part which should be interesting.  You won't have to tell us any trade secrets, but we are headed in that direction anyhow.

So, different types of thermocouples.  Again, just a review question for us.  Why use them?  Why the different types and why are we using different types?

JN:  Forgive me, Doug, and the rest of the audience, for that matter, if I end of repeating some of the things that came out in the previous episode.  Basically, when you're talking about thermocouples, there are the two chemistries; for lack of a better term, you have “base” and “noble” metals.  The base metals are really the metals that we focus on at Pelican.  The noble metals are the more expensive ones- rare earth metals, tungsten, titanium, platinum and all those sorts of things that people spend exorbitant amounts of money on.  There are purposes for those, but, typically, what you're going to see in the heat treat industry, in particular, you're going to see a lot of the base metals.

I like to say that, truly, the 20 gauge K, in particular, is the 800 pound gorilla in the room.  It's almost considered, and I think it would be by people in the industry, a commodity.  There are untold miles of that wire that are used in the heat treating and smelting industry.  K is used, really, because of the temperature range.  It fits in well with what people do in the heat treating industry.  It is good for temperatures from zero up to around 1260 C.  It's inexpensive, it covers the ranges that those people are looking for, and, again, it's the 800 pound gorilla in the room when it comes to temperature measurement in the heat treating industry.

Click to read the Heat Treat Today Original Content article on thermocouples.

The other types such as J comes up periodically, particularly if you're looking at lower temperature ranges.  You won't see it quite as often in the heat treating industry.  You will see it somewhat, but not to the degree that you would K.  The J thermocouple wire has an iron leg so it does oxidize and you need to be careful about that sort of thing.  Type T thermocouple wire has a narrower range.  It has very good response times in cryogenic and cold temperature applications.  The higher, upper end of type T thermocouple wire, typically, wouldn't be of terrible interest to the audience that we're involved with here, for the most part, because the upper ends around 370 to 400 C degrees, in lab environments; that's where it's going to be the most popular.

There is also type E.  It's a higher temperature, as well.  Response time.  Broader range is a little bit better than K at lower temperature ranges.  An interesting one is type N that you will see fairly often in the heat treating industry.  For those people not familiar with type N, it is different alloys than type K.  It covers virtually the same temperature range that type K does and will, actually, have less drift than type K.  It is more expensive because of the alloys that it is made of, but, again, if you're interested in less drift, then type N is worth looking at.  It hasn't quite caught on in the US the way it has in, say, Europe, in particular, and that really has to do with the infrastructure of the instrumentation.  People have instrumentation that is either calibrated for K or J or something like that.  Now, there is instrumentation out there, now, that would use K and N both, so we may see more, particularly, in the aerospace industry I would think it would become more and more popular.

DG:  That's helpful.  It's always good to hear those things over again.

How about the parameters and/or the factors that need to be considered when you're constructing the wire to start with?  What do we need to be worried about in that area?

JN:  I don't know if I like the word “worried” exactly, Doug.  It's more, what do we need to think about?  What do we need to be concerned about?  Besides the metallurgy that we just talked about, we need to think in terms of what the sensor is actually going to look like.  Is it just the wire?  Thermocouple wire, by itself, can be a thermocouple; that's it, without any protection or anything like that.

As I mentioned earlier, you can tack weld it to an ingot, or something like that, and there you go.  You don't have any probe, there is no thermal well to protect it or anything like that.  But, what we do need to think about, then, is the process that it's going to be involved in.  Where is it going to be used?  Is it going to see an environment where there is a flow.  Is it going to see an environment where somehow the thermocouple wire can become damaged?  In that case, then, we're headed in the direction of talking about what our customers are interested in.  And for a customer for Pelican Wire, we're mainly talking about people who actually assemble thermocouples – they make the connections, they have the molds and all that sort of thing.

To be clear, Pelican Wire just makes wire.  And, again, the thermocouple wire can be used as a thermocouple, but a tremendous amount of wire is actually connected to some sort of a sensor or a probe, as I said, and is protected in a thermal well or something along those lines.

"But, what we do need to think about, then, is the process that it's going to be involved in.  Where is it going to be used?  Is it going to see an environment where there is a flow.  Is it going to see an environment where somehow the thermocouple wire can become damaged?  In that case, then, we're headed in the direction of talking about what our customers are interested in."

John Niggle

DG:  Do we also have to be concerned with oxidizing, carburizing atmospheres, corrosive atmospheres?  Is that, also, something that we need to be aware of?

JN:  Absolutely.  And that is one of the reasons you will see a probe thermocouple is because the wire is protected from that atmosphere.  Nearly all of the wires that we talked about would be affected, particularly, in say, like a sulfurous environment; it would be subject to corrosion, oxidation and something along those lines.

Other factors, of course, are the accuracy and how much space we have.  Believe it or not, if it's going to go into a small orifice, then we need to think about what the age size is going to look like.  And then the environment:  Is it going to be abrasive?  Is there movement?  Is there some sort of braiding motion that could wear a hole in the wire in the insulation and so forth?  There are a lot of things to think about.

DG:  And, it would probably be a good idea, especially if our heat treat people are running anything outside of the norm, regardless of what it is, whether it be atmosphere, configuration, fixturing, if there is anything outside the norm, they would probably be wise to mention it to the thermocouple wire and/or thermocouple probe manufacturer and make sure that they know so that you guys can get help get the right thing on there in their furnace.

JN:  Yes, absolutely.  At the end of the day, we work with this every day.  We have design engineers on staff who can assist with technical questions and so forth and, of course, our customers, and the actual thermal wire assembly people, this is what they do every day of the week.

“I'll tell you that we've done some work, actually, in the aerospace industry and we had a customer that we sold significant, literally miles, of thermocouple wire to (when I say aerospace, it was specifically for space exploration) and this was because of whatever we had done with the insulation.”

DG:  Let's talk about something a little bit new, I guess, to our conversation here in this 3-part series, and that is the insulation that's going to go around these wires.  Can you tell us what are the different types of insulations and what are the advantages and/or disadvantages of each, and why would we be using them?

JN:  I'll break it down into, what I would call, the four basic categories.  That would be an extruded insulation, insulations that are tapes, fiberglass insulations that are routinely worked with and then, of course, high temp textiles.  High temp textiles, in particular, would be of interest to the audience here in the heat treat metallurgy world.

Extruded insulations can be a variety of thermoplastics.  A term that, I think, Ed has probably mentioned before and we've talked about before is extension grade wire.  That typically has a PVC insulation on it and the reason PVC works for that is that it's cheap and extension grade wire, typically, does not see the sorts of high temp environments that you're going to see in processes.  It's really a signal wire that takes the signal from the probe or from the sensor to the process control device.

DG:  So what kind of temperature tolerances can the extruded wire handle?  Are we talking 300, 400 degrees?  I guess you talk C, I talk F.

Teflon frying pan

JN:  We talk whatever language our customer likes to talk, but we do talk C quite a bit.  So, PVC is quite low, it's in the 200s F.  But, when you're looking at fluoropolymer insulations (and Pelican is really a high temp house, so we focus on the higher temp insulations) you have FEP and PFA, those are in the 200s.  PFA actually goes up to 260.  So, you can see, it's probably not suitable for heat treating applications, smelting and that sort of thing.  The advantages to those compounds would be that you're going to have abrasion resistance.  Think about your Teflon frying pan: it's slick, it's smooth.  So, if you're in an environment where there is some movement, it will be good for that.  And, of course, it will have excellent moisture resistance and chemical resistance.  Those would be the advantages to the extruded wire.  The other advantage would be, because you'll have a thinner wall than you will with the other insulations, you'll have some more flexibility.  So, if you have a type N radius, you can go around a corner easily.

The next step up, in terms of temperature resistance, would be the tapes.  Basically, in that area, you're looking at PTFE tape, mica take and capped-on tape or polyamide tape.  Those will give you slightly higher heat resistances.  The mica, in particular, would give you more.  (Mica, as a matter of fact, is used as a supplement to the PTFE to give it even higher heat resistance.)  Mica will go up to 500 C, PTFE and the polyamides match, in terms of heat resistance, the extruder products around 260.  What they do give you, again if you use the tapes, is the heat resistance you're looking for, some abrasion resistance and the moisture resistance.  You'll have less flexibility because those products are stiffer, but they're also going to be a little bit lighter weight unless you incorporate the mica into it.  Then, when you do that, you're going to end up with an even stiffer wire and it will be a little bit heavier, and all those will be larger in diameter than an extruded wire.  If you look at an environment where you need to poke the wire through a hole and that hole is an eighth of an inch, you need to think really hard if what you're doing is going to work.

DG:  So you've got extruded and you've got tapes.

JN:  The next step after that would be fiberglass.  In the case of fiberglass, you have E glass and S glass.  Of the two, E glass would  have the lower temperature resistance and you're looking at 482 C on the high end.  For S glass, you're up to 704 C.  Now you're starting to talk about insulations that you will see in the heat treat environment; it's quite common, especially on the S glass side where you're looking at the 704, you'll see a lot of people that need 500 C for whatever reason.  The advantage, obviously, to the glass, as I mentioned, is the higher heat resistance.

There are disadvantages.  Think about fiberglass for a minute.  We actually have to saturate the wire to keep it from fraying without it ever really experiencing any abuse.  If we don't saturate it, then the wire can fray, and you can get fiberglass in your fingers even, which is unpleasant.  So, fiberglass has some disadvantages like that.  If you put it in an environment where there is some movement, abrasion, vibration or something like that, it can be problematic.  Also, it's going to be stiffer because it's saturated, typically.  Sometimes you'll even see those saturants even cause problems in a heat treat environment where, if it gets too hot, the saturant can leave an ash behind.  You're going to lose flexibility, as I said.  You're not going to have the abrasion resistance, the chemical resistance or the moisture resistance that you're going to get from an extruded product.

The other one that we see, again, literally miles and miles and miles of, in the heat treat world would be what's called Refrosil and Nextel, (those are both, actually, trade names).  We're talking about vitreous silica and ceramic.  Again, those are, what we call, high temp textiles.  Now, you're looking at products that are in the 1200 C range.  Ceramic goes up to 1204, vitreous silica is in the 870's.  Again, there are some of the same disadvantages with those that you're going to have with glass.  It's going to be somewhat fragile.  We don't saturate those because the saturants are not going to hold up in the environments that they're going to be placed into, so you would have that ash residue left.

Again, it will be stiff, it will be even larger in diameter than the fiberglass, which is larger than tape which is larger than the extruder products.  Of course, you're not going to have the abrasion resistance, the moisture resistance or the chemical resistance.  But it does protect the wire in those elevated temperature environments that are critical for the heat treating industry.

DG:  Let's back up a bit.  I want to understand something you said.  You said, in the fiberglass, it is saturated and in the textiles it's not.  I want to know what you mean by saturated.

JN:  It's either a solvent-based or a water-based saturant that is applied to the wire to protect it.  Think in terms of a varnish.  It would be like a protective coating.  Again, it just keeps the exterior of the wire, the bare wire, from being exposed.  It's a coating, but we call it a saturant.

DG:  High temperature textiles tend to be the stuff we're using, in the heat treat industry, probably most.

JN:  Yes.  Again, when I mentioned the 800 pound gorilla in the room, the 20-gauge K with the vitreous silica or the Refrosil would be an extremely popular product in the heat treating industry, absolutely.

DG:  Let me ask you a very, very fundamental question.  I'm curious of your answer to this.  Why do we insulate wires at all?  Is it done to protect from temperature or is it done simply to protect them from crossing with each other and grounding or shorting out?  Why do we insulate?

"I'll go back to something that I know Ed talked about: the Seebeck effect. You have this loop; if you don't have that loop, then you don't have anything. You don't have the EMF, the electromotive force, that you're looking for."

John Niggle

JN:  It is the second part.  When you look at any wire construction, the two singles have to be insulated from each other.  I'll go back to something that I know Ed talked about: the Seebeck effect.  You have this loop; if you don't have that loop, then you don't have anything.  You don't have the EMF, the electromotive force, that you're looking for.  We do make a wire that is not duplex, but, typically, what you're going to see is a wire that has two singles and then it's duplexed with an insulation over the top.  We do make a wire that the two singles are jacketed in parallel and then no jacket is placed over the top but that is for an application that wouldn't be suitable for the heat treat industry.

DG:  I asked that question, because for those who are unbaptized in this conversation, it's kind of interesting.  So, we're talking about insulation and we're doing a lot of conversation about temperature ranges and, for someone who wouldn't think so, they would say, "Well, that means you're insulating because of temperature."  But, really, the reason you're insulating wire is for electrical.  It's to keep them apart.  It's just how high of temperatures those insulations can handle, not that you're insulating the wire to keep them cool.  Right?

JN:  Absolutely not.

DG:  That may sound very basic, but there may be people that think that, so I want to get that on the table.

JN:  Most of the people in the audience are probably familiar with this already.  Typically, what happens is the wire is stripped so we have exposed ends.  And then those ends, as we mentioned earlier, can be tack welded onto something or they can just be out there.  The thermocouple world, by the way, is an incestuous world where we have customers, we kind of compete with those customers, some of our customers compete with others of our customers but then they buy supplies from each other.  You probably already know that from talking with other people in this industry.  At any rate, the wire is stripped and then it's either tack welded or it's connected to some sort of sensor or probe of some kind.

DG:  It's a tangled web, the whole thermocouple world.  You've got customers, yet you sell to certain suppliers who also sell to those customers.  It can be complicated!  But that's OK, we'll let you guys worry about that; we just want to make sure the thermocouples are good and we'll be in good shape.

Another question for you:  We talked about the process and a lot of different environments about what type of thermocouple you should use, but does the process being monitored influence the type of insulation that should be used?  Obviously, temperature is going to have an impact, but is there anything else?

JN:  Yes.  Let's circle back to what we talked about earlier just a little bit.  When you look at the process, you need to think of what is going to happen to that wire?  Is it going to see, first of all as you mentioned, the temperatures?  That is certainly important so that comes into play with the insulation.  But, we need to think about, Is there movement?  Is there going to be some abrasion?  Is there some sort of activity that could damage the wire somehow?  Then, we need to look at the chemicals, like we talked about.  Do we need some chemical resistance?  Do we need water resistance?  Is it going to be submersed in something?  Those things all need to be considered.

Again, as I mentioned earlier, the actual placement of the wire.  Does it need to be inserted in a hole?  At Pelican, we produce wire down to 40 and actually 44 gauge which, I think, will probably be stunning to most of the people in your audience because, again, 20-gauge K is what these people think about.  In the heat treating industry, what you see is they need a robust wire, something that's going to be able to handle those temperatures and a large conductor like that.

Another thing to think about, actually, is a bend radius.  Are you going to put the wire somewhere where it needs to go around a corner, around a bend?  Then, are you better off using a stranded wire?  A stranded wire is going to have more flexibility.  You can buy a 20-gauge stranded wire, you can buy 24-gauge, 28-gauge, 36-gauge.

DG:  Now, what do you mean by stranded?

JN:  Stranded wire would be instead of just one solid 20-gauge conductor, you have multiple strands that make up that 20-gauge.  But, if you think about it, multiple strands of wire will actually be more flexible.  You'll still get the same results, but it will be more flexible if you need to go around a corner or if you need to insert it into something.

DG:  It's almost like a braided wire as opposed to a solid.

JN:  Yes.  Now braiding is a little bit of a different process.  When we're talking about stranded wire, it's, basically, just spiral.  Braided is more crossed into each other, which, coincidentally, is the way that the fiberglass and the high temp textile insulations are made – those are actually braided.  And, by the way, I'll just toss this out, it's made on equipment that really hasn't changed since the ‘20s.  I'm not talking about the 2020s, I'm talking about the 1920s!  Rumor has it, some of that braiding equipment was, actually, designed by Thomas Edison.  I'm not sure if that's really true.  But that is the process used to apply the fiberglass and high temp textiles.

DG:  So, anything else as far as any other considerations we need to take into consideration when we're talking about choosing insulation?  If not, that's fine.

JN:  I think I covered them, Doug.

DG:  At Pelican Wire, your company, I know you guys deal with a broad number of markets, I'm sure, one of them being heat treat.  What do you see as any special demands or special concerns that are, maybe, unique or, at least, inherent in the heat treat market?

". . . what you see is insulations that are higher in temperature resistance, as well. In some cases, as I mentioned earlier, in ovens where there is a saturant involved, we could see ash. Some people ask that saturant not be applied to the fiberglass and that's certainly something that can be done."

John Niggle

JN:  For the heat treat market, again, I'll go back to what I said earlier, we see a lot of 20-gauge K used.  It's because of the higher heat requirements, the higher heat that is involved with the processes of heat treating.  Secondly, what you see is insulations that are higher in temperature resistance, as well.  In some cases, as I mentioned earlier, in ovens where there is a saturant involved, we could see ash.  Some people ask that saturant not be applied to the fiberglass and that's certainly something that can be done.

Sometimes we're even asked to not put tracers.  We go back to what we talked about earlier with the metallurgy- you have two legs, a positive and a negative leg.  Well, how do those end users tell those legs apart if they look similar, if they're an alloy of some kind?  So, we put a tracer wire in there so you have a red leg and a yellow leg, in the case of type K, or sometimes you just have a red leg depending on what they ask for.  Those tracers can, actually, cause problems, too, if the ovens are hot enough and they are in there for long enough times.  We even have customers who ask us not to put tracers in their wire, for that matter.

Accuracy, of course, is extremely important.  I know that Ed, in a previous episode, talked about standard limits, special limits and all that sort of thing.  Typically, you're going to see special limits used in the heat treat industry and, in some cases, we're asked even for special calibration points.  In previous podcasts, I've heard you talk with other people about AMS2750 and how that comes into play.  It is extremely critical for the folks in the heat treating industry and something that clearly a thermocouple wire producer has to understand.

Episode 1 of 3 of AMS2750 series

DG:  Let's say you've got a customer that calls you and wants to talk about their thermocouple needs, let's say there is some sort of special need.  What would you suggest they have, in hand, when they call you?  What do you need to know from them to help you do a better job with their thermocouple needs?

JN:  Honestly, the first question we do ask is:  What temperature are you going to be running this at?  How hot are we going to be?  We, absolutely, need to know that.  That helps us narrow down the alloy that we might be looking at, whether it's type K, type J, type E, or whatever.  And then, of course, it's a natural thing to dial in the insulation after that.  Quite honestly, one of the things that frustrates me is when people say, "I need Teflon."  Well, OK.  Do you need FEP or do you need PFA?  Those are both fluoropolymers like Teflon is.  We need to talk about temperature resistance, so don't tell me you just need Teflon.  We do need some specifics when it comes to that sort of thing.  Again, we talked earlier about stranding and stranded wire.  Do you need some flexibility?  What gauge size do you think you need?  How robust does this wire need to be?  Those are some of the key factors we need to know about.

DG:  Let's say, for example, somebody does want to get a hold of you or Ed, your colleague who was on the first two episodes, how is best to do that?  How can we get a hold of Pelican Wire?

JN:  Our web address is www.pelicanwire.com, about a simple as it possibly gets.  Our email addresses are, actually, quite simple, as well.  If anybody wants to email me, it's jniggle@pelicanwire.com.  You can contact me directly, if you want to, or we have a sales inbox and that is simply sales@pelicanwire.com.  We do have a phone number, but it seems a lot of people don't care about phone numbers as much these days.  But the number is 239-597-8555.

DG:  I have one, unrelated, question for you that I know the world is wanting to know:  How is it having a company in Naples, Florida, that's what I want to know?

JN:  I'll tell you what, Doug, the answer today will be different than the answer in October or December.  It's actually quite nice.  We moved down here 8 years ago in 2013.  I moved from the Midwest and didn't really feature myself owning palm trees, but I own palm trees, which is pretty darn cool.  We are, as the crow flies, about 3 miles from the water, where I live anyhow, 20 minutes by car.  Our office and manufacturing facility are, actually, on the very edge of the everglades.  You can see the picture in the background behind me.  That's our building.  That's actually facing east.  That is a sunrise over the everglades.  We're on the very edge of the everglades.  There is a lake right next to our building and then, after that, it's everglades all the way over to Miami.  And, real quick, our weather pattern comes from the east.  It doesn't come from the Gulf.  This time of year, in the summer at about 3:00 in the afternoon, about the time that we're doing this call right now, a thunderstorm blows up and it comes from the east over the everglades and it moves to the west.  The trees blow that direction, you can see it coming.  It's interesting.  During the wintertime, I have to tell everyone, you'd probably be jealous, but it is truly paradise.

DG:  Yes!  I've been to Naples, ate at a nice restaurant down there, years ago, but it was very nice.

You guys are also employee-owned, right?

JN:  That's correct, yes.  The company is over 50 years old.  The founder of the company passed away in 2008 and, before he passed away, he converted the company to an employee-owned operation.  So, we've been employee-owned since 2008.  We've purchased a couple other companies since then that folded into, what we call, the Wire Experts Group.  Pelican Wire is part of that.  We have a sister company out in Colorado.  We bought another facility in Chicago and folded that into our company in Colorado.  So, yes, we're employee-owned and it works out really well for the employee owners, I'll tell you that much.

DG:  That's great.  John, it's been a pleasure talking with you.  Thanks for taking the time.  I appreciate your expertise.  Hopefully, we will see you out on the pavement somewhere in the real world.

JN:  I'll, actually, be seeing you at the heat treat show in about 3 weeks.

DG:  That's about right, yes.

JN:  Hopefully, some of the people that are listening we will see, as well.

Doug Glenn <br> Publisher <br> Heat Treat Today

Doug Glenn
Publisher
Heat Treat Today


To find other Heat Treat Radio episodes, go to www.heattreattoday.com/radio and look in the list of Heat Treat Radio episodes listed.

Heat Treat Radio #64: Thermocouple 101 with John Niggle, Pelican Wire (Part 3 of 3) Read More »

Furnace Gas Composition Controlled with CO and CO2

 

Source: AZO Sensors

 

 

Many heat treat processes require protective or process gases. These gases often require careful monitoring. One of the protective and/or process gases used in many heat treat applications is an endothermic atmosphere which is made up largely of CO, CO2, H2, and N2. This article is about the creation and proper monitoring of endothermic atmospheres.

In an atmosphere furnace, the proper mix of these gases can help facilitate changes in the metal such as proper hardness and strength, resistance to temperature, or improved tensile strength to mention a few. Without careful control of temperature, time and atmosphere, metals can experience unwanted changes in properties such as hydrogen embrittlement, surface bluing, soot formation, oxidation, and decarburization. With such critical outcomes in the balance, it is necessary to control the endothermic gas.

An excerpt:

“In order for the required metal treatment to be a success, you must control and monitor the gas composition with extreme care. The concentrations of gases, CO₂, H₂O, CH₄, N₂, H₂ and CO, that make up the endothermic gas atmosphere should be measured in order to aid the prevention of unwanted reactions and ensure that the endogas generator and the furnace are operating normally.”

 

Read more: “CO and CO2 Control of Endothermic Gas in Heat Treatment Furnaces”

Furnace Gas Composition Controlled with CO and CO2 Read More »

Heat Treat Tips: Atmosphere Control

During the day-to-day operation of heat treat departments, many habits are formed and procedures followed that sometimes are done simply because that’s the way they’ve always been done. One of the great benefits of having a community of heat treaters is to challenge those habits and look at new ways of doing things. Heat Treat Today‘s 101 Heat Treat Tips, tips and tricks that come from some of the industry’s foremost experts, were initially published in the FNA 2018 Special Print Edition, as a way to make the benefits of that community available to as many people as possible. This special edition is available in a digital format here.

Today, we begin an intermittent series of Technical Tuesday posts of the 101 tips by category, starting with Atmosphere Control


Atmosphere Control

Heat Treat Tip 5

Out of Control Carburizing? Try This 11-Step Test

When your carburizing atmosphere cannot be controlled, perform this test:

  1. Empty the furnace of all work.
  2. Heat to 1700°F (926°C).
  3. Allow endo gas to continue.
  4. Disable the CP setpoint control loop.
  5. Set generator DP to +35°F (1.7°C).
  6. Run a shim test.
  7. The CP should settle out near 0.4% CP.
  8. If CP settles out substantially lower and the CO2 and DP higher, there’s an oxidation leak, either air, water or CO2 from a leaking radiant tube.
  9. If the leak is small the CP loop will compensate, resulting in more enriching gas usage than normal.
  10. Sometimes but not always a leaking radiant tube can be found by isolating each tube.
  11. To try and find a leaking radiant tube, not only the gas must be shut off but combustion air as well.

Submitted by AFC-Holcroft

Heat Treat Tip 13

Finding the Cause for Bad Parts

So you just ran a batch and the parts are bad. Now what? According to Jim Oakes at Super Systems Inc., here is a good checklist to use to start isolating the problem. While not exhaustive, this list can at least take you through a progression of steps to help start identifying the culprit.

Step 1:  Review the process data for abnormalities. Did the setpoint for temperature and atmosphere get set properly? Does the process chart show good control of the temperature and atmosphere? Was the time at heat correct? Was the quench and temper processes run properly?

Step 2:  Check the generator to make sure it was pumping out the right atmosphere.

Step 3:  Check the furnace atmosphere. Even if the generator is working, there may be leaks in the furnace.

Step 4:  Check carbon controller to make sure it matches furnace atmosphere reading. Verify probe accuracy and adjust carbon controller.

Step 5:  Do probe troubleshooting. And if all else fails . . .

Step 6:  Replace the probe or call Super Systems for help.

Submitted by Super Systems Inc.

Heat Treat Tip 49

What to Do When Parts Are Light on Carbon

Many factors can contribute to why parts are not meeting the correct hardness readings. According to Super Systems Inc., here is a quick checklist of how to start narrowing down the culprit:

  1. Review process data for abnormalities: The first thing to do is make sure the parts were exposed to the right recipe. Check the recorders to make sure the temperature profile and atmosphere composition were correct. Make sure all fans and baffles were working correctly. Determine if any zones were out of scope and that quench times were acceptable. If any red flags appear, hunt down the culprit to see if it may have contributed to soft parts.
  2. Check the generator. Next, check the generator to make sure it is producing the gas composition desired for the process. If available, check the recorders to make sure the gas composition was on target. If not, check the generator inputs and then the internal workings of the generator.
  3. Check the furnace atmosphere. If the generator appears to be working correctly, the next step would be to check the furnace itself for atmosphere leaks. Depending on what type of furnace you have, common leak points will vary; for continuous furnaces, common leak points are a door, fan, T/C, or atmosphere inlet seals. Other sources of atmosphere contamination may be leaking water cooling lines in water-cooled jackets or water-cooled bearings. More than likely, if the generator is providing the correct atmosphere but parts are still soft, there is a leak into the furnace. This will often be accompanied by discolored parts.
  4. Check carbon controller to make sure it matches furnace atmosphere reading (verify probe accuracy and adjust carbon controller). This can be done using a number of different methods: dew point, shim stock, carbon bar, 3 gas analysis, coil (resistance), etc. Each of these methods provides a verification of the furnace atmosphere which can be compared to the reading on the carbon controller. If the atmosphere on the carbon controller is higher than the reading on the alternate atmosphere check, that would indicate the amount of carbon available to the parts is not as perceived. The COF/PF on the carbon controller should be modified to adjust the carbon controller reading to the appropriate carbon atmosphere. If the reading is way off, it may require the probe to be replaced.
  5. Check the carbon probe.
  6. Replace the probe – CALL SSI.

Submitted by Super Systems Inc.

Heat Treat Tip 62

Double Check Carbon Potential Control

Configuring your atmosphere controller to ensure the correct carbon potential readings can sometimes be tricky. We suggest you double check your atmosphere control settings to make sure they are set up correctly. Before making a change to the carbon controller, make sure the atmosphere that the carbon probe and carbon controller are reading is matching up to an alternate method of atmosphere. This can be done using a number of different methods: dew point, shim stock, carbon bar, 3 gas analysis, coil (resistance), etc. Each of these methods provides a verification of the furnace atmosphere which can be compared to the reading on the carbon controller. The COF/PF on the carbon controller should be modified to adjust the carbon controller reading to the appropriate carbon atmosphere.

It is important to make sure that the alternate method of verifying atmosphere is done properly (sampling ports, time for atmosphere exposure, sample prep, etc).

The calculation of carbon in the atmosphere using a carbon/oxygen probe is based on the output millivolts — created based on the partial pressure of oxygen in the reference air versus partial pressure of oxygen in the furnace, the temperature of the furnace, and a calculation factor referred to as COF (CO Factor), PF (Process Factor), or Gas Factor.

The carbon controller can be modified so the COF/PF value can be changed to match up with the alternate reading. A furnace calculator on the SSI website or mobile app can help determine what these settings should be. It is important to note that you should not change these values to the point where you are masking another issue such as a bad probe or a furnace/generator issue.

Again, if the reading is way off (a setting of a COF below 130, for example), it may require the probe to be replaced.

Submitted by Super Systems Inc.

Heat Treat Tip 75

Carbon Probe Trouble Shooting

If you’re having atmosphere problems with a furnace that has been operating normally for some time, avoid the temptation to remove the carbon probe. There are several tests you can run on nearly all carbon probes while the probe is still in the furnace, at temperature, in a reducing atmosphere. Super Systems Inc. provides an 11-step diagnostic procedure in a white paper on their website, in a paper titled, “Carbon Sensor Troubleshooting” by Stephen Thompson.

Submitted by Super Systems Inc.

 

Heat Treat Tip 88

Slight Positive Pressures Are Best

Atmosphere furnace pressure should be only slightly above ambient. The range should be between 0.25 – 0.35 inches water column. Higher pressures in multiple zone pusher furnaces will cause carbon control issues. High pressures in batch furnaces will cause high swings when doors and elevators move.

Submitted by AFC-Holcroft

Heat Treat Tip 94

Confirm Composition of Endothermic Atmosphere

Wisdom dictates a trust-but-verify approach to your endothermic generator. Although your generator is supposed to crank out a consistent endo atmosphere, we suggest periodically verifying the integrity of that atmosphere with a dewpoint analyzer or a 3-gas analyzer. Generator control systems provide control of air gas ratio and possibly a trim system, used to maintain a dew point that could be rich (too much gas) or lean (too much air). The dew point range could typically be between 30°F and 50°F. Flowmeters are provided to maintain a base ratio (2.7 : 1) for the air/gas mixture supplied to a retort filled with nickel-coated catalyst. The gas is then passed through an air cooler (some older systems used water) to freeze the reaction so the gas can be transported through a header system to furnaces. The ratio at which the gas is generated offers a dew point that can be measured. The makeup of the endothermic gas provided by a generator is typically 40% hydrogen, 40% nitrogen, and 20% carbon monoxide. Maintaining these percentages will result in a carburizing atmosphere that is conducive to best carburizing practices.

Non-dispersive infrared analyzer (NDIR) systems are invaluable when trying to troubleshoot generator issues. The analyzer will typically measure CO, CO2, and CH4. As mentioned earlier, if we know that 20% CO is being generated, we can cross check the air/gas ratio and sticking flow meters, or determine that an adjustment of the air and/or gas ratio is required. The measurement for indication of sooted or nickel depleted catalyst can also be achieved by using an analyzer. If the indicated measurement of CH4 is higher than .5%, a burnout of the catalyst is required, using the manufacturer’s required procedures. If after a burnout the CH4 level is still high, the catalyst may need to be replaced altogether.

Submitted by Super Systems Inc.  


If you have any questions, feel free to contact the expert who submitted the Tip or contact Heat Treat Today directly. If you have a heat treat tip that you’d like to share, please send to the editor, and we’ll put it in the queue for our next Heat Treat Tips issue. 

Heat Treat Tips: Atmosphere Control Read More »